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Issues:

Reliability; arbitrariness (natural “lumpiness” of the data):

bringing partitions and characteristic patterns within the domain of statistical
Inference; substitute membership with membership probabilities.

Multiple and compounding sources of experimental error:

robustification towards anomalies, while keeping an adequate degree of
sensitivity.

Much is unknown, but some aspects are well known or object of well defined
hypotheses:

Integrating exploration and substantive modeling.

An approach based on multivariate normal mixtures and
> maximum likelihood may provide some answers...




The Mixture Approach' data is a size N sample from
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A cartoon...

Contamination,
robustification
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Z. = |, unconstrained
means, exploration

Linear constraints on mean patterns

Z,=1, const. mean pattern, filtering

S Z,, e.g. a sinusoidal trend in time,

Z,=0, no systematic expression, filtering
>

Different weights (1), but
same shape, size and
orientation (%) from S. e.g.
spherical, diagonal and
unconstrained, but other
classes are possible.

Z,, €.9. a polynomial trend in temp,



Another cartoon... Linear constraints on mean patterns

A
Contamination, Z,=1, const. mean pattern, filtering

robustification /
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Z,=0, no systematic expression, filtering

______ - T )

e Different weights (1t,), Shape,
R size and orientation () from S.
| e.g. modeled to share certain
features (but not others), or
unconstrained.

Z. = |, unconstrained
means, exploration

\ Z,, €.9. a polynomial trend in temp,



L_og likelihood(s):

Unobserved component membership vectors

X. OR™, m 0{03°,i=1..N
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I (9) :ng(ﬁ (1) < “incomplete”

T-variate normal density

o (9) = Y m log(f, () + Y.m, log(m) «— | “complete”

Important:
In principle, the X’s may contain missing values that will end up in the category of
unobserved data (not in the incomplete likelihood), and will be imputed by the EM
algorithm — next.
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Numerical maximization via EM algorithm:

E) Using the current parameter values compute
m, = E(m, | X,) = (7 f,(7) *diag (M) f,(F), i =1..N

M) Substitute the current parameter values with the maximum of

e () =E(lyu (9) | X) = Zﬁ log(f; (7)) + Zﬁi log(77)

Iterate until convergence.

e e —(0) : _
Initialization: M ,i=1.N
memberships from a k-means clustering with k=C-1. Or other strategies
(dependence on initialization is an issue also here)



Outcomes, from the last iteration:

ﬁc .c=1..C-1 < Estimated weights
d, = Zc,éc ,c=1..C -1« Estimated mean patterns
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A~ ] A ~ structure(s
7. and possibly [, , G -— )
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Z/ Estimated vectors of conditional prob’s;
membership probabilities

o

Cluster formation: /\

Their distribution’s high end
concentration gives interesting

iOCluster(c) o max{p,...Pic}=p; = Pe

or, threshold y1(0,1) info on “lumpiness” of the
: . . data, in the context established
I0Cluster(c) « max{p;;y}=p; = Pi by choice of C and constraints

specification

residual (C +1)th classfor i: p; <y



First application:

Spellman et al., 2000, expression of yeast genes on a time course covering 2+ cell
cycles. Log ratios; baseline = unsynchronized culture. Select 800 genes with
periodic expression profiles. Halter et al., 2000 restrict attention to T=12
equispaced time points recovering 2 cell cycles, and N=696 profiles without
missing values (most of the variability of the data cloud is captured by the first two
principal components; data do not appear “lumpy”).

We use this 696 x 12 data matrix, but do not center and standardize by row/gene
profile.

* No missing value imputation;

« contamination = spherical normal;

e common within component covariance structure.



Fits in first application:
« K-means, k=8 (initialization for all mixture fits below)

o Mix. Fit A: closest to k-means. C-1=8 regular components, plus contamination.
Unconstrained mean patterns. Spherical within-comp. cov. structure (var. about
mean pattern equal and uncorr. over t’s).

* Mix. Fit B: relaxation of A; diagonal within-comp. cov. structure (var. about
mean pattern different but uncorr. over t’s).

o [Mix. Fit C: relaxation of B; unconstrained within-comp. cov. structure (var.
about mean pattern different and freely corr over t’s)].

o Mix. Fit D: a restriction of B; mean patterns modeled as

:uct = (ﬁcl +18c2t) +(ﬁc3 +ﬁc4t)3i (t _Shlf%iT] \ t :112, c=1.8

perio

-
~ ' \

optimized at the outset
over a grid

B ’s (continuously) optimized by EM
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Second application:

Gasch A.P., Spellman P.T., Kao C.M., Carmel-Harel O., Eisen M.B., Storz G.,
Botstein D., Brown P.O. (2001), Genomic Expression Programs in the Response
of Yeast Cells to Environmental Changes, Molecular Biology of the Cell 11
4241-4257.

N=6152 known and putative genes on over 140 conditions. We concentrate on a
T=8 time course for heat shock (25 to 37C, minute 5, 10, 15, 20, 30,40, 60, 80).
Log ratios; baseline=pooling equal amounts of all experimental samples. The
profiles of 2509 genes (40.78% of the total) have missing values.

We use this 6152x8 matrix, without centering and standardize by row/gene
profile.

* Missing value imputation;

« contamination = uniform on data range;

« allow for different within component covariance specifications (also different)
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Fits in second application:

« free means, EEE covariances: C-1=7, common within component covariance
structure, unconstrained.

e free means and UUE covariances: C-1=7, each component has a common
(but not fixed) correlation structure, but differences in overall variability
volume and distribution over the time course are allowed.

(many more, also modeling means, not presented)
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