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Clustering through Mixture ModelsClustering through Mixture Models
General references:
Lindsay B.G. (1995), Mixture models: theory, geometry and applications, NFS-

CBMS Regional Conference Series in Probability and Statistics.
McLachlan G.J., Basford K.E. (1988), Mixture Models: Inference and 

Applications to Clustering, Marcel Dekker, New York.
Fraley C., Raftery A.E. (1998), How Many Clusters? Which

Clustering Method? Answers Via Model-Based Cluster Analysis, The 
Computer Journal, 41, 570--588.

Applications to Microarray data:
Yeung K.Y., Fraley C., Murua A., Raftery A.E. and Ruzzo W. L. (2001),Model-

Based Clustering and Data Transformation for Gene
Expression Data, Bioinformatics, 17 (10) 977-987.

Examples that are joint work with F. Bartolucci, bart@stat.unipg.it Dept. of 
Statistics University of Perugia, ITALY.
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Issues:

• Reliability; arbitrariness (natural “lumpiness” of the data): 
bringing partitions and characteristic patterns within the domain of statistical 
inference; substitute membership with membership probabilities.

• Multiple and compounding sources of experimental error:
robustification towards anomalies, while keeping an adequate degree of 
sensitivity.

• Much is unknown, but some aspects are well known or object of well defined 
hypotheses: 
integrating exploration and substantive modeling.

An approach based on multivariate normal mixtures and 
maximum likelihood may provide some answers…
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The Mixture Approach: data is a size N sample from

…each profile comes from one of C alternative components

C; contamination term
Uniform on data range or
sparse and spherical 
(“absorbs” anomalous profiles)

c=1…C-1; regular components
Model means and within component 
covariance to various degrees of 
specificity
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A cartoon…
Z1=1, const. mean pattern, filtering

Z2, e.g. a sinusoidal trend in timet

Z4=0, no systematic expression, filtering

Z3, e.g. a polynomial trend in tempt
Zc = I, unconstrained 
means, exploration

Contamination, 
robustification

Different weights (πc), but 
same shape, size and 
orientation (Σ) from S. e.g. 
spherical, diagonal and 
unconstrained, but other 
classes are possible.

Linear constraints on mean patterns
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Another cartoon…
Z1=1, const. mean pattern, filtering

Z4=0, no systematic expression, filtering

Zc = I, unconstrained 
means, exploration

Contamination, 
robustification

Different weights (πc), Shape, 
size and orientation (Σc) from S. 
e.g. modeled to share certain 
features (but not others), or 
unconstrained.

Linear constraints on mean patterns

Z3, e.g. a polynomial trend in tempt
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Log likelihood(s):

Important:
in principle, the X’s may contain missing values that will end up in the category of
unobserved data (not in the incomplete likelihood), and will be imputed by the EM
algorithm – next. 
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Numerical maximization via EM algorithm:

E) Using the current parameter values compute

M) Substitute the current parameter values with the maximum of

Iterate until convergence.

Initialization: 

memberships from a k-means clustering with k=C-1. Or other strategies
(dependence on initialization is an issue also here)
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Outcomes, from the last iteration: 

Cluster formation:
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First application:
Spellman et al., 2000, expression of yeast genes on a time course covering 2+ cell 
cycles. Log ratios; baseline = unsynchronized culture. Select 800 genes with 
periodic expression profiles. Halter et al., 2000 restrict attention to T=12 
equispaced time points recovering 2 cell cycles, and N=696 profiles without 
missing values (most of the variability of the data cloud is captured by the first two 
principal components;  data do not appear “lumpy”). 

We use this 696 x 12 data matrix, but do not center and standardize by row/gene
profile. 
• No missing value imputation; 
• contamination = spherical normal; 
• common within component covariance structure.
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Fits in first application:
• K-means, k=8 (initialization for all mixture fits below)
• Mix. Fit A: closest to k-means. C-1=8 regular components, plus contamination. 

Unconstrained mean patterns. Spherical within-comp. cov. structure (var. about 
mean pattern equal and uncorr. over t’s). 

• Mix. Fit B: relaxation of A; diagonal within-comp. cov. structure (var. about 
mean pattern different but uncorr. over t’s). 

• [Mix. Fit C: relaxation of B; unconstrained within-comp. cov. structure (var. 
about mean pattern different and freely corr over t’s)].

• Mix. Fit D: a restriction of B; mean patterns modeled as
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Second application:

Gasch A.P., Spellman P.T., Kao C.M., Carmel-Harel O., Eisen M.B., Storz G.,
Botstein D., Brown P.O. (2001), Genomic Expression Programs in the Response
of Yeast Cells to Environmental Changes, Molecular Biology of the Cell 11
4241-4257.

N=6152 known and putative genes on over 140 conditions. We concentrate on a
T=8 time course for heat shock (25 to 37C, minute 5, 10, 15, 20, 30,40, 60, 80).
Log ratios; baseline=pooling equal amounts of all experimental samples. The
profiles of 2509 genes (40.78% of the total) have missing values.

We use this 6152x8 matrix, without centering and standardize by row/gene
profile. 
• Missing value imputation; 
• contamination = uniform on data range; 
• allow for different within component covariance specifications (also different)
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Fits in second application:

• free means, EEE covariances: C-1=7, common within component covariance 
structure, unconstrained. 

• free means and UUE covariances: C-1=7,  each component has a common 
(but not fixed) correlation structure, but differences in overall variability 
volume and distribution over the time course are allowed.

(many more, also modeling means, not presented)


