
Correlating Expression Data

and Genomic Sequence Data

1 Introduction

In general terms, our goal is to find relationships between a gene’s expression profile (for now,
this means mRNA abundance) and observable patterns in the genomic DNA sequence around that
gene. For example, genes that have a match to the pattern TGACTC within 1000 bp upstream of their
translation start site might tend to show increased mRNA levels under a certain set of conditions.
Specific strategies include:

1. Start with a cluster of genes that show similar expression profiles. Search their upstream
regions (say, the first 1000 bp upstream of their translation start site) for some sequence
“pattern” that occurs more frequently than can be explained by chance alone. Instances of
this pattern might be signals that control mRNA levels.

2. Start with a DNA sequence “pattern”, and find all genes having a match to the pattern in
their upstream region. Determine whether the expression profiles of those genes show a higher
degree of similarity than can be explained by chance alone. For instance, taking “pattern” to
mean a given 6-mer, it is feasible to do this with all 4096 possible patterns and ∼6200 yeast
genes. This identifies patterns that may be correlated with mRNA levels.

3. As in the previous example, start with a sequence pattern and an upstream match to the pat-
tern. Look for a set of experimental conditions (columns) where the genes behave differently
depending on whether or not they have an upstream match to the pattern. For instance, you
might learn that the site is associated with liver-specific genes.

4. Since a single sequence “signal” may need to occur in concert with other signals to exert
a regulatory effect, more complicated strategies may be needed, like the following. Start
with a DNA sequence “pattern” and the set of genes with upstream matches to it. Attempt
to identify one or more additional patterns such that the subset of genes having upstream
matches to both (or all) patterns show similar expression patterns.

But what should we mean by a “pattern” in genomic DNA sequence? The feasibility of studies
like the four mentioned above will depend critically on the answer. We need to look at the range
of biological mechanisms that influence mRNA levels and see what forms are taken by the relevant
“signals” that can be identified from genomic DNA sequence data.

As a brief digression, it might be worthwhile to consider a transcriptome-proteome comparison,
i.e., a simultaneous analysis of expression data and alignments of protein sequences. This could
be done with two species, e.g., to look for orthologous proteins having different expression patters.
It might even be done within a single species, e.g., comparing expression patterns of paralogous
proteins to explore the hypothesis that gene duplication followed by a change in expression pattern
is a common mode of genome enlargement. I don’t know of studies like this, but we’re sure to see
them in the future. In the mean time, back to DNA sequences.
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2 Regulatory Signals in Genomic DNA Sequence

The number of mRNA molecules from a particular gene that are found in a cell under particular
conditions depends on the rates of both production and degradation. The latter is frequently
influenced by signals in the 3′ UTR, but I don’t know of any studies that relate occurrences of those
signals to microarray data.

The more important factor is rate of production, i.e., of transcription. The cell can control this
by a variety of mechanisms, only some of which leave an observable signal in genomic sequence
data.

• In some organisms, transcription is affected by chemical modification, particularly methyla-
tion, of certain nucleotides. Over evolutionary time this can affect the DNA sequence com-
position, since CpG dinucleotides tend to become TpG if the C is methylated. Hence, “CpG
islands”, i.e., regions of a few hundred basepairs that don’t show a strong depletion of CpG
dinucleotides, give a DNA-sequence “signature” that one might attempt to correlate with
mRNA abundance.

• In some organisms, transcription is affected by chemical modification of certain proteins bound
to the DNA sequence, such as acetylation of histones. It is unclear how genes regulated this
way might be identified from DNA sequence data. (Perhaps there are subtle nucleosome
positioning signals.)

• It seems plausible that transcription frequency is affected by the length of the gene, number
of exons, distance to neighboring genes, GC content, and a number of other aspects of ge-
nomic layout. However, short-duration changes like those typically measured in microarray
experiments aren’t made by changing these factors.

• In all probability, the single most influential mechanism for controlling transcription rates over
short time periods is the binding of certain proteins, called transcription factors to genomic
sequence, frequently within a few hundred basepairs upstream of the transcription start site.
(Technical note: it is typically much easier to predict the start site for translation than the
start site for transcription, so the former is frequently substituted in practice.)

Summary: The vast majority of current work comparing mRNA abundance with genomic se-
quence patters focuses on transcription factor binding sites. This leads us to the question of what
sorts of sequence “patterns” can be used to characterize such sites.

3 Transcription Factor Binding Sites

Nature has invented a variety of “DNA binding domains” that are used by transcription factors,
such as “homeodomains” and “zinc fingers.” Frequently, the DNA binding domain of a transcription
factor recognizes short segments of genomic DNA, e.g., of length 5-8, and generally the sequence
motif that it recognizes and binds is somewhat variable.

One well-studied transcription factor is called GCN4. Inspection of 22 experimentally confirmed
binding sites revealed a typical pattern of TGACTC. However, the positions differ in the degree to
which the letter seems to be required. For instance, the first T and the first A (position 3) looked
mandatory, while the last C was observed in just over half of the examples. Actually, it makes
sense that not all binding sites are equivalent; cells need different amounts of the various proteins
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regulated by a given transcription factor, and nature’s solution might be binding sites of different
affinity.

A more precise summary of the observed binding sites, one that captures binding-site variability,
is provided by the following frequency matrix, which gives the number of times that each position
was occupied by each possible nucleotide.

A 0 0 22 1 0 5
C 0 0 0 17 0 12
G 0 21 0 2 1 3
T 22 1 0 2 21 2

However, for GCN4, requiring an exact match to the consensus 6-mer, TGACTC, does a reasonably
good job of identifying binding sites.

GAL4 is another well-studied yeast transcription factor. (We’ll hear more about it later in the
semester, when we discuss “yeast two hybrid” experiments.) When yeast cells are shifted to galactose
(a kind of sugar) from another carbon source, they need to activate a number of genes to process
the new food. An important step in this pathway is the activation of the GAL4 transcription factor,
which in turn up-regulates a set of genes having upstream GAL4 binding sites. In other words,
a microarray experiment involving the switch to galactose should identify one or more clusters of
genes with a similar expression profile (up-regulation), for which upstream GAL4 binding sites are
over-represented.

GAL4 binding sites have been studied in great detail, including X-ray crystallography of the
GAL4-DNA binding complex, identification of functional GAL4 binding sites, and in vitro mea-
surements of the binding affinity to various oligonucleotides. To a first approximation, a GAL4
binding sites has reverse-complemented CGG triplets at each end, separated by 11 rather arbitrary
nucleotides, i.e., CGGN11CCG, using N to denote an unspecified nucleotide. More sensitive recognition
of these sites can be obtained with a pattern that utilize IUPAC symbols for ambiguous nucleotides
to express the weaker requirements at internal positions of the GAL4 binding site. For instance,
the nucleotide in position 8 appears to almost always be C or G (denoted S), while position 9 is A

or T (denoted W), which suggests the pattern CGGN4SWN5CCG.
Even greater precision can be gained by using a frequency matrix, which can express e.g., the fact

that the nucleotide at position 8 is more often C than G. The following matrix gives the frequency
with which the various nucleotides occur at each position in the GAL4 binding site, normalized so
that the sum of each column is 10.

A 0 0 0 4 1 1 7 0 5 1 0 2 0 2 0 0 0
C 10 0 1 2 3 5 0 7 0 4 2 5 5 1 9 10 0
G 0 10 9 4 5 3 2 3 0 3 1 1 4 1 1 0 10
T 0 0 0 0 1 1 1 0 5 2 7 2 1 6 0 0 0

position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

In particular, note that a search for over-represented 6-mers is not expected to work for finding
GAL4 binding sites.
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4 Using a Frequency Matrix to Predict Binding Sites

Currently, the most popular computational approach for predicting transcription factor binding sites
is to use a position weight matrix (PWM) derived from the frequency matrix for each transcription
factor. To get started, consider a hypothetical frequency matrix for 5-mers:

A 1 6 5 1 4
C 2 1 1 2 1
G 2 1 3 3 4
T 5 2 1 4 1

(We have invented a matrix containing no zeros, as an initial simplification.)
Suppose we want to decide whether a particular 5-mer, say TAGTA, matches this pattern. Perhaps

the most obvious approach is to add up a score for each letter that is taken from the corresponding
place in the table. For TAGTA the sum is 5 + 6 + 3 + 4 + 4 = 22, which is not too much worse that
the maximum value of 24 for TAATA or TAATG. If we take, say, 20 as a threshold score for predicting
a match, the 5-mer matches the pattern.

In practice, people use a somewhat different approach, which is less ad hoc. The reasoning goes
as follows. Let us convert the matrix into something that looks like probabilities by dividing each
column by its sum (10 in this case):

A 0.1 0.6 0.5 0.1 0.4
C 0.2 0.1 0.1 0.2 0.1
G 0.2 0.1 0.3 0.3 0.4
T 0.5 0.2 0.1 0.4 0.1

Think of this as specifying a “random” 5-mer that matches the pattern. Thus, in a matching 5-mer,
the first letter is T with probability 0.5, it is a C with probability 0.2, and so on. The probability that
a 5-mer matching the pattern happens to be TAGTA is 0.5×0.6×0.3×0.4×0.4 = 0.0144. We want to
compare this with the probability that the 5-mer would be generated in a “null model” where each
nucleotide is equally likely to occur at each position. (We could use a null model that considered
observed nucleotide frequencies.) Here, the probability of any particular 5-mer is 4−5

∼ 0.0009765.
Thus, the “odds ratio”, determined by dividing the probability that the 5-mer would be generated
by our model for the frequency matrix by the probability that it would be generated randomly, is
about 0.0144/0.0009765 ∼ 14.7.

Another way to obtain this value for an arbitrary 5-mer is to divide each entry in the matrix
of probabilities by the probability of the letter in a random sequence (i.e., multiply by 4 under our
simple assumptions), giving:

A 0.4 2.4 2.0 0.4 1.6
C 0.8 0.4 0.4 0.8 0.4
G 0.8 0.4 1.2 1.2 1.6
T 2.0 0.8 0.4 1.6 0.4

To get the score of a 5-tuple, one multiplies the table entries, e.g., for TAGTA we get 2.0×2.4×1.2×
1.6 × 1.6 ∼ 14.7.

To remove the needed to perform multiplications, we can replace each entry in the matrix by
its logarithm, getting:
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A -0.916 0.875 0.693 -0.916 0.47
C -0.223 -0.916 -0.916 -0.223 -0.916
G -0.223 -0.916 0.182 0.182 0.47
T 0.693 -0.223 -0.916 0.47 -0.916

Now we can add entries instead of multiplying, since log(XY ) = log(X) + log(Y ). For TAGTA we
get 0.693 + 0.875 + 0.182 + 0.47 + 0.47 = 2.993. The result is the log odds ratio, i.e., the logarithm
of the above-mentioned odds ratio.

Care must be taken when 0 is an entry of the frequency matrix, since the logarithm of 0 is
undefined. A simple-minded approach is to add 1 to every position of the frequency matrix before
starting. Of course, there are statistically smarter alternatives.

Such a matrix, containing entries formed by taking the logarithm of the ratio of the probability
that the letter occurs in the corresponding position of a “true k-mer” divided by the probability that
it occurs randomly, is frequently called a position weight matrix (PWM). The usual way of modeling
a transcription factor binding site is to determine an appropriate PWM and score threshold.

5 Binding Sites Work in Concert

On reflection, it seems quite implausible that a transcription factor binding site could function
in isolation, particularly in multi-cellular organisms. For simplicity, suppose that a necessary and
sufficient condition for binding of a given protein to DNA is occurrence of an exact match to a certain
6-mer. Then on average, one of every four genes will have such a match in its upstream 1000 bp,
purely by chance. (There are 4096 possible 6-mers.) Moreover, the number of times that a given
6-mer occurs in the human genome is about 3 million, on average, and a cell won’t contain enough
molecules of the transcription factor to bind all of them. Finally, the number of regulatory patterns
among different genes (say, in humans) is far greater than the number of different transcription
factors. Thus, it is inadequate to use a simple-minded explanation of regulation, where binding of
a single transcription factor to a precisely-defined signal in the genomic sequence regulates a gene’s
transcription.

The “signal” in the genomic DNA sequence that causes a certain transcriptional profile, e.g.,
that constitutes necessary and sufficient conditions for a gene to be expressed in muscle tissues,
may consist of a cluster of binding sites for certain transcription factors, with certain constraints on
the relative order and possibly orientations of the sites. The following are currently active research
areas:

• For a particular tissue and developmental stage, be able to predict from genomic DNA se-
quence whether a given gene is expressed under those conditions. For instance, consider the
recent paper:

Berman, B. P, Y. Nibu, B. Pfeiffer, P. Tomancak, S. Celnicker, M. Levine, G.
Rubin and M. B. Eisen (2002) Exploiting transcription factor binding site clustering
to identify cis-regulatory modules involved in pattern formation in the Drosophila

genome. PNAS 99, 757-762.

By looking for 700-bp intervals containing a dense cluster of matches to (PWMs for) five
different transcription factor binding sites, the authors were able to accurately identify genes
active in the early fruit-fly embryo. The paper
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Krivan, W., and W. W. Wasserman (2001) A predictive model for regulatory se-
quence directing liver-specific transcription. Genome Research 11, 1559-1566.

had some success at characterizing expression in the liver using 200-bp intervals and four
different transcription factors.

• Given upstream regions from a set of co-regulated genes, predict binding sites and combina-
torial rules (e.g., spacing constraints) potentially involving several transcription factors that
govern the expression pattern. A few recent papers on this topic are available at the class
website, but this is a highly technical area.
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