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The identification and interpretation of the regulatory signals within the human genome remain among the
greatest goals and most difficult challenges in genome analysis. The ability to predict the temporal and spatial
control of transcription is likely to require a combination of methods to address the contribution of
sequence-specific signals, protein—-protein interactions and chromatin structure. We present here a new
procedure to identify clusters of transcription factor binding sites characteristic of sequence modules
experimentally verified to direct transcription selectively to liver cells. This algorithm is sufficiently specific to
identify known regulatory sequences in genes selectively expressed in liver, promising acceleration of
experimental promoter analysis. In combination with phylogenetic footprinting, this improvement in the
specificity of predictions is sufficient to motivate a scan of the human genome. Potential regulatory modules
were identified in orthologous human and rodent genomic sequences containing both known and
uncharacterized genes.

[Supplementary data and the submission of sequences for analysis are available at http://www.cgb.ki.se/krivan/

liver/liver.html.]

Unprecedented insights into the mechanisms of gene regula-
tion are promised from the compilation of eukaryotic ge-
nomes and the subsequent application of sequence analysis
algorithms. Present-day bioinformatics, however, is largely re-
stricted to phenomenological approaches. Given the limited
knowledge about molecular interactions between regulatory
proteins and DNA, computational biologists face a daunting
challenge in studying transcription—the physics of gene regu-
lation is not yet understood (Claverie 2000).

Experimental progress has been made in understanding
biochemical mechanisms governing transcription, including
enumeration of the components and characterization of their
interactions (Roeder 1996). Recent advances have addressed
the complex architectures of the regulatory regions (enhanc-
ers and repressors) that mediate alterations of the transcrip-
tion rate (Blackwood and Kadonaga 1998). Detailed molecular
analyses of genes from multicellular eukaryotes have estab-
lished that regulatory regions can be viewed as modules of
multiple transcription factor (TF) binding sites that act in
combination to confer expression patterns upon genes (Yuh
et al. 1998; Loots et al. 2000).

We present here a procedure to identify regulatory re-
gions on the basis of characteristics of sequence modules ex-
perimentally verified to direct transcription selectively to liver
cells. The method is extended to a genomic scale by incorpo-
rating cross-species sequence comparisons [phylogenetic foot-
printing (Fickett and Wasserman 2000; Wasserman et al.
2000)] between the available human and rodent genomic se-
quences. The combination of these two methods accurately

TPresent address: ZymoGenetics Inc., 1201 Eastlake Avenue East,
Seattle, WA 98102.

2Corresponding author.

E-MAIL wyeth.wasserman@cgb.ki.se; FAX 46 8 337412.

Article published on-line before print: Genome Res., 10.1101/gr. 180601.
Article and publication are at http://www.genome.org/cgi/doi/10.1101/
gr.180601.

11:1559-1566 ©2001 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/01 $5.00; www.genome.org

identifies a set of experimentally documented, as well as po-
tential, regulatory modules.

RESULTS

Collection of Experimental Data

To develop a model for transcriptional regulation in liver, it is
necessary to compile a representative collection of experi-
mentally defined liver-selective regulatory modules. By selec-
tive we refer to genes that are either expressed exclusively in
liver (specific) or in a small number of tissues including liver.

Figure 1 illustrates the regulatory regions that we used as
the foundation of our model, all of which are verified experi-
mentally to direct gene transcription in liver cells. As with a
previously described skeletal muscle regulatory region collec-
tion (Wasserman and Fickett 1998), it was observed that most
extensively studied liver regulatory modules are shorter than
200 bp in length. Typically, regulatory regions contain more
than one experimentally verified TF-binding site. An impor-
tant observation from the collection of experimental data is
the following: liver-specific gene expression is governed by
the combined action of a small set of TFs, primarily HNF-1,
HNF-3, HNF-4, and C/EBP. This conclusion is consistent with
established biological knowledge (Ktistaki and Talianidis 1997;
Tronche et al. 1997).

It is instructive to have a closer look at the different roles
of the critical TFs during the development of the liver; HNF-3
is strongly linked to transcription of genes expressed early in
liver development, whereas HNF-1 and HNF-4 are linked to
expression of genes in the mature liver (Darlington 1999;
Locker 2000). As the genes in our collection were selected for
expression in the mature liver (e.g., in ditferentiated hepato-
cytes), it is anticipated that HNF-1 and HNF-4 may have a
prominent role in the transcriptional regulation of these
genes. This necessarily orients the module detection algo-
rithm toward the detection of regulatory regions of genes that
are activated late in liver development.
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Figure 1 Clusters of TF-binding sites that direct liver-specific tran-
scription. The critical factors are HNF-1, HNF-3, HNF-4, and C/EBP.
For human genes, the names denote the approved HUGO symbols,
otherwise they are given by the corresponding name of the human
ortholog, if available. The numbers denote positions relative to the
TSS.

Position Weight Matrices

Before addressing the problem of describing clusters of bind-
ing sites that constitute regulatory regions, it is necessary to
develop models for the binding of the individual critical TF.
For this purpose, we recorded experimentally determined TF-
binding sites for the principal transcription factors. To build
robust and descriptive binding profiles, we obtained sites
from genes with diverse expression profiles. Although a por-
tion of the collected sites was present in the regulatory regions
from the collection described above, most experimentally de-
fined sites were from a larger set of genes with different pat-
terns of expression (for instance, genes expressed early in liver
development).

From the binding-site collection, we generated position-
weight matrices [PWMSs (Fickett 1996a), sometimes also called
motifs or profiles]. In the best implementations, such models
have been shown to produce quantitative predictions analo-
gous to DNA-binding energies (Stormo and Fields 1998),
which are highly predictive of in vitro protein-DNA interac-
tions (Tronche et al. 1997). To generate the models, known
TF-binding sites are first aligned to generate a count matrix.
The subsequent step consists of a log-odds rescaling of the
count matrices and is described below. There are two principal
difficulties one has to face when constructing matrices, com-
piling a sufficiently large number of binding sites and low-
binding specificity of some transcription factors. For the four
factors under study, a sufficient number of binding sites has
been verified experimentally. However, the binding sites for
C/EBP are diverse in sequence, posing a significant challenge
for multiple sequence-alignment algorithms. Whereas a pub-
lished count matrix was used initially to model the binding of
C/EBP (Johnson and Williams 1994), we meanwhile identi-
fied several tools capable of producing alignments of the col-
lected sites consistent with the published descriptions of the
binding specificity. Sequence logos for the individual matrices
are presented in Figure 2.
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Toward a Predictive Model

Although PWMs adequately describe the binding specificity
of the individual transcription factors, the predictions pro-
duced with the models contain a large number of false sites
lacking any experimental evidence; the typical frequency of
predicted sites in genomic sequence is between 1/(10,000 bp)
and 1/(100 bp), depending on the selected score threshold.
This phenomenon is understood in terms of the well-
established relation between the information content I of a
TF-binding site and the predicted site frequency v in the ge-
nome (Schneider et al. 1986), given by I =10g,(1/v). Because of
the high rate of false positives, predictions based solely on
PWMs are of little or no practical use for the identification of
binding sites with functional roles in vivo. The fact that the
binding specificity of individual TFs is too low to provide the
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Figure 2 Sequence logos for critical liver TF-binding sites. The po-
sition-specific information content is plotted in bits along the ordi-
nate. The low total information content of HNF-3 and C/EBP reflects
the low binding specificity of these two factors.
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basis for the modeling of regulatory mechanisms is consistent
with the biochemical observation that groups of TFs rather
than single factors are required for the function of regulatory
regions. Thus, one can try to construct a model with a con-
siderably lower rate of false positives by combining the scores
of the individual PWMs in a well-defined way.

Logistic Regression Analysis

We have chosen multivariate logistic regression analysis
(LRA) as the mathematical approach to combining the scores
of the individual PWMs, following the methods described
previously for a model of skeletal muscle regulatory regions
(Wasserman and Fickett 1998). Logistic regression is a proba-
bilistic method that is used to classify objects into two distinct
sets (Hosmer and Lemeshow 1989). The two distinct sets are
represented by a binary outcome variable y. The variable y, in
turn, is modeled by a function m = mw(x), in which x is a vector
of independent variables. In our case, the objects are segments
of nucleotide sequence and the two sets are given by segments
that are liver-specific regulatory regions (positives) and those
that are not (negatives). Each of the components of the four-
dimensional vector x is associated with a PWM for an indi-
vidual TF; the numerical value of each vector component is
given by the maximum score produced by the PWM analysis
of each subsegment within the 200-bp DNA segment consti-
tuting the object. The positive training set consisted of the 16
nonorthologous regulatory regions shown in Figure 1. The
negative training set consisted of 1804 randomly selected hu-
man genomic sequences [as reported previously (Wasserman
and Fickett 1998)]. The logistic regression coefficients gener-
ated for the liver model are given in Table 1. Note that the P
values for the coefficients associated with HNF-3 and C/EBP
are unconvincing, and the numerical values of the coeftfi-
cients themselves are about a factor of six smaller than those
for HNF-1 and HNF-4. Consequently, the contributions of
HNF-3 and C/EBP to the current model are minimal. For bio-
logical clarity, they were retained in the model, although a
purely statistical argument could be proffered for their exclu-
sion.

Assessing the Model

Several properties of the model must be explored. First, a suit-
able score threshold must be selected for the classification of
sequences into positive and negative categories. Second, the
performance of the model must be defined in terms of speci-
ficity and sensitivity. Finally, the robustness of the model
must be examined, particularly with regard to issues of circu-
larity.

The definition of a suitable score threshold is based on
balancing performance specificity and sensitivity. We identi-
fied a threshold for the liver model to allow, on average, one
predicted region per gene, with the length of a gene defined as

Table 1. The Logistic Regression Coefficients
of the Liver Model

Variable Coefficient Wald Chi-square value P-value
Intercept —23.23 39.10 1.25 x 10 ?
HNF-1 0.64 38.05 6.89 x 107'°
HNF-3 0.10 0.47 0.49

HNF-4 0.58 18.61 1.61 x 1072
C/EBP 0.12 0.25 0.62

35,000 bp. Specifically, a threshold of 0.25 was determined,
which produces a prediction frequency of one module per
35,000 bp. We screened the liver-specific training set and ob-
served that 62% (10 of 16) of the positive training sequences
were correctly classified above the threshold. To assess the
validity of this observation, a cross-validation/jack-knife pro-
cedure was performed. In these analyses, each positive LRA
training sequence was removed from the training data and
scored by the output model. All 10 sequences that were cor-
rectly classified when included in the training set were still
correctly classified when removed from the training set. To
address the issue of circularity in the construction of the
weight matrices, we performed TF-binding site jackknife tests,
leaving each experimentally verified binding site from the
regulatory regions out of the PWM model construction. Com-
pared with the LRA training jackknife test described above,
the more complete jackknife results showed slightly higher
variation between the different models. For the regions that
contained HNF-1 or HNF-4 sites, the number of correctly clas-
sified training regions was 9 + 1. This finding indicates that
the LRA modeling process is sensitive to changes in the
PWMs, or, from a different viewpoint, that the modeling of
the binding of the individual transcription factors would ben-
efit from a greater number of experimentally verified sites.
However, as indicated earlier, only a small fraction of the
binding sites used to generate the PWMs were from the re-
gions used to train the LRA model. To determine the sensi-
tivity of the LRA model to the circular use of TFBSs from the
target regions, complete jackknife analyses were performed in
which all transcription factors from each regulatory region
were removed from PWM construction and the region itself
removed from the LRA training process. Two regulatory re-
gions were no longer classified correctly in the comprehensive
analysis, CYP7A1 and SULT2A1 (both due to alterations in the
HNF-1 profile). Thus, half of the regulatory regions were de-
tected in all studies without any circularity conflicts.

To ascertain the stability of the model and suggest a
minimal number of training sequences for future studies, the
numerical values of the LRA coetficients were determined as a
function of the number of positive training sequences. Results
are shown in Figure 3. The coefficients for the intercept, HNF-
1, and HNF-4 are shown in logarithmic plots in A, B, and D. A
non-logarithmic representation was chosen for the more vari-
able coefficients of HNF-3 and C/EBP in C and E. Inclusion of
11 or more randomly selected positive training sequences pro-
duced stable coefficients for all matrix models (on the basis of
coefficient deviation from 15 trials for each training set size).

Phylogenetic Footprinting

The selection of clusters of binding sites with the LRA model
allows a reduction of the prediction rate from one TF-binding
site per 250 bp to one liver module per 35,000 bp. Despite this
improvement by two orders of magnitude, with regard to
scanning large pieces of genomic sequence, the results are not
sufficiently specific to motivate human inspection. For a
search of the human genome, the expected number of posi-
tives is on the order of tens of thousands. Therefore, it is
highly desirable to complement the use of the liver module
model (LMM) with an independent method that is consistent
with known biology and likely to improve prediction speci-
ficity. The LMM is based on one characteristic of regulatory
regions, namely the clustering of patterns representing TEF-
binding sites. Another property of regulatory regions, ob-
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served by multiple groups, is their tendency to be more
strongly conserved over the course of evolution than regions
lacking sequence-specific function. This differential conserva-
tion can be quantified to reveal patterns of conservation that
have been called phylogenetic footprints (for review, see Fick-
ett and Wasserman 2000). A conservation-based filter pro-
vides an independent means of selecting predicted regulatory
modules likely to have sequence-specific functions.

To confirm the complementarity of the LMM and con-
servation measures, orthologous pairs of liver genes were ana-
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Figure 3 Dependence of the numerical values of the LRA coeffi-
cients on the number of included positive training sequences. Be-
tween 4 and 15 randomly selected positive training sequences were
used for the computation of the LRA coefficients. The bars depict the
maximum, minimum, and average coefficient values from 15 trials.

lyzed (Fig. 4). In all cases, the liver model correctly classifies
the documented liver regulatory regions. Furthermore, the
regulatory regions exhibit a high level of sequence conserva-
tion. Figure 4A and B address sequences contained in the
training set. Figure 4A shows CYP7A1 (cholesterol 7a-hy-
droxylase), in which there is a documented regulatory region
upstream of the first exon at ~2000 (Cooper et al. 1997), and
additional annotated exons are located in the vicinity of po-
sitions 3700 and 4800. Figure 4B shows IGF1 (insulin-like
growth factor 1), in which there is a significant sequence simi-
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larity in the documented regulatory region (Nolten et al.
1995) at ~1500 and in the adjacent exon downstream. The
LMM score peaks in the documented regulatory region. Fur-
ther upstream, at position 700, the LMM and conservation
scores suggest the presence of a regulatory region. To our
knowledge, there exists no documented regulatory region in
that portion of the promoter.

Screening of Genomic Sequence

To enable a computational screen for regulatory regions on a
genome scale, a procedure was implemented to identify regu-
latory regions conserved between orthologous human and ro-
dent genomic sequences. A sequence-specific conservation is
observed for between 15% and 25% of the human genome in
comparison with rodents (Jareborg et al. 1999; Stojanovic et
al. 1999), the use of phylogenetic footprinting will not elimi-
nate false-positive predictions. However, the elimination of
nonconserved regulatory regions promised increased specific-
ity in the set of predictions. To assess the contribution of
sequence conservation, a scan was conducted of long ge-
nomic sequences.

On the basis of a systematic procedure (Fig. 5), 147
unique potential human liver regulatory regions were identi-
fied. Fourteen regions were adjacent to described genes (Table
2), including four from the LMM training set (Table 2A:
CYP7A1, G6PC, IGF1, PAH). Of the remaining 12 regulatory
regions from the original training set (1) four sequences were
never detected by the LMM (as indicated above, INS, SLC2A2,
PROC, and TTR), (2) there were no orthologous sequences for
three (ALDOB, APOB, and CYP2H1), and (3) five human-
rodent regulatory region pairs are not sufficiently similar for
detection at the applied blast similarity threshold. The regions
and associated E values are DDC (E = 0.008), the two GC
regions (E =0.5, 0.03), SULT2A1 (E > 1), and UGT1A1 (E > 1).
Sequence conservation of regulatory regions is not universal,
although the function may be retained. For instance, al-
though UGT1A1 has highly conserved HNF-1 sites, there are
pronounced differences between the mouse and human pro-
moters. Certain polymorphisms in the human regulatory re-
gion are the cause for Gilbert’s syndrome (Bernard et al.
1999), a relatively common liver disorder, suggesting a re-
duced pressure for sequence conservation in this region.

Four detected modules (Table 2B) are documented as
liver regulatory regions in the literature, but were not in our
original training collection [FGA (Hu et al. 1995), HNF1 (Kai-
saki et al. 1997), IGFBP1 (Suwanichkul et al. 1990), and MTP
(Hagan et al. 1994)]. The analysis of FGA (a-fibrinogen) is
presented in Figure 4C. There is a strong conservation signal
in the documented regulatory region around 13,000, as de-
tected with the LMM.

Figure 4 Combining the liver model with phylogenetic footprint-
ing for selected sequences. The sequence similarity between human
and rodent sequences as determined with DBA (Jareborg et al. 1999)
is shown as a solid black line. The position-dependent LMM score of
the human sequence centered with respect to a 200-bp window is
shown as a broken gray line. Documented regulatory regions, de-
picted by triangles, are characterized by strong score for both DBA
and LMM. Boxes show annotated exons that possess a high level of
cross species conservation, reflected by a high DBA score. The posi-
tion with respect to the human sequence is shown along the abscissa.
Fig. 4A addresses CYP7A1 (human accession L13460, rat U01962).
Fig. 4B addresses IGF1 (human $85346 [identical with M12659],
mouse Y18062).
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Figure 5 Combining the liver model with phylogenetic footprint-
ing on a quasi-genomic scale. See text for explanation.

Two regions (Table 2C) are present in genes known to be
selectively expressed in liver, although their role in liver-
specific expression has not been experimentally proven. The
detected regulatory region of the murine complement factor B
gene (BF) is documented (Garnier et al. 1996), but liver
specifcity has not been examined. The MIG6 gene (also called
Gene 33) listed in Table 2 is a broadly expressed gene, how-
ever, the gene is specifically up-regulated in liver cells by in-
sulin (Melendez et al. 2000).

Four examples for regions adjacent to genes not believed

Table 2. Putative Liver Modules

to be selectively expressed in liver are shown in Table 2D. The
gene coding for the fatty acid binding protein (FABP2) is spe-
cifically expressed in the intestine. The captured segments are
located in the promoter regions. The result for GUCA2B (uro-
guanylin), a gene primarily expressed in the intestine, is illus-
trated in Figure 4D. There is a documented regulatory region
in the proximal promoter—approximately at position 800
in the plot—that contains a verified HNF-1 binding site
(Whitaker et al. 1997). This serves as an example that the liver
TF can play functional roles in other tissues in partnership
with other TFs (Cereghini 1996). Functional roles of TFs in
multiple contexts can lead to spurious predictions of our
model. The region detected in the human HOXA4 sequence
coincides with an annotated upstream regulatory region
(Doerksen et al. 1996). HOXA4 is specifically expressed in the
embryonic nervous system. SLC34A1 is the human solute car-
rier family 34 (sodium phosphate), member 1 gene and is
specifically expressed in the kidney. For both human and
mouse, the detected modules lie within the promoter of
SLC34A1.

Most of the remaining sequences were identified in un-
annotated genomic sequences and have not been mapped to
specific genes. The positions of these regions have been
posted on the internet site for this paper. Regions mapping
onto known coding exons (nine occurrences) have been ex-
cluded, as the conservation measure is uninformative for
these cases.

DISCUSSION

Accurate detection of regulatory sequences is a difficult chal-
lenge requiring a combination of methods. We have con-
structed a predictive model for liver gene regulatory regions to
detect clusters of binding sites for TFs associated with liver-
specific transcription. By combining our liver model with
phylogenetic footprinting, we have performed a successful
genome-wide screen for regulatory regions.

A limitation of the current model is the focus on genes
that are mainly expressed in the mature liver, thus, future
work must address modeling the regulatory mechanisms of

LMM score Human Rodent
gene human rodent BLAST E-value acc. # begin/end species acc. # begin/end
(a) CYP7A1 0.59 0.35 5.1 x 10~ L04629 278/577 cg L04690 1303/1602
G6PC 0.97 0.63 24 x 10716 AF051355 3530/3829 mm U91573 293/592
G6PC 0.97 0.33 1.1 x 1078 AF051355 3506/3805 m U57552 1180/1479
IGF1 0.30 0.39 1.3 x 107 M12659 1266/1565 mm Y18062 1223/1522
PAH 0.30 0.90 20 X 10°% AF033857 1293/1592 mm X97253 726/1025
(b) FGA 0.28 0.37 50 x 10 U36478 12780/13079 m X86561 1480/1779
HNF1 0.31 0.31 4.5 x 10 7° U73499 294/593 rr X63959 14/313
HNF1 0.31 0.31 8.4 x 107 U73499 294/593 m X67649 3282/3581
IGFBP1 0.41 0.45 43 x 107 '® M23592 64/363 mm X67493 493/792
MTP 0.50 0.62 5.2 x 1073 S71339 509/808 cg S74104 0/299
() MIG6 0.49 0.50 2.0 X 10-%° AL034417 76528/76827 rr X07267 0/299
BF 0.75 0.56 9.3 X 10-% AF019413 79680/79979 mm AF109906 10767/11066
(d) FABP2 0.29 0.58 43 x 1018 M18079 588/887 mm M65033 285/584
GUCA2B 0.40 0.49 2.4 x10°'® 770295 768/1067 mm AF006668 362/661
HOXA4 0.48 0.48 6.4 x 10 °¢ U41755 814/1113 mm uU75897 734/1033
SLC34A1 0.27 0.39 20 x 102 AF058289 1629/1928 mm AF071876 3978/4277

Abbreviations: cg, Cricetulus griseus; mm, Mus musculus; rn, Rattus norvegicus; rr, Rattus rattus.
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genes that are selectively expressed in the early stages of liver
development.

In addition to the limitations in the available experimen-
tal data for other systems, the low-binding specificity of a
subset of transcription factors poses a challenge for the con-
struction of weight matrices, which form the basis of the com-
putational approach described in this work. As more experi-
mental data and more sensitive multiple local alignment al-
gorithms become available (M. Tompa, pers. comm.; C.
Workman, pers. comm.), this situation is expected to improve.

A more fundamental limitation lies in the fact that the
model takes into account only the linear structure of the
DNA, whereas properties related to protein—protein interac-
tions and the chromatin structure are not addressed. The
spacing between sites and the interaction between TF binding
to adjacent sites can be incorporated in future models. Early
efforts to incorporate such information have addressed pairs
of well-studied TFs (Fickett 1996b) or have been restricted to
evolutionarily related sets of genes or homologous retroviral
regulatory regions (Frech et al. 1997). As more knowledge is
accumulated, it may become possible to include information
about chromatin structure.

Extending the current model to more tissues will require
additional data. For both liver and skeletal muscle (Wasser-
man and Fickett 1998), two somewhat homogeneous tissues,
abundant published experimental data was available. Very
few other expression contexts offer such rich data resources,
but it is possible to identify binding models for the critical TFs
given a set of coregulated genes associated with a target con-
text (Wasserman et al. 2000), and additional refinements of
phylogenetic footprinting may allow the identification of
likely modules to serve as training data.

In light of the recent progress in the study of transcrip-
tional regulation, the abundant gene expression data, and
ever-accumulating genomic sequences, sophisticated compu-
tational techniques are becoming indispensable for the eluci-
dation of regulatory mechanisms.

METHODS

Position Weight Matrices

The coefficients mg; of the PWMs were computed from the
count matrices by

ng;+ \/N/4
N+ \/KI
Pe ’

in which n, ; is the count of nucleotide B at position i, N is the
number of samples, and pg denotes the background frequency
of base B (assumed to be 0.25 for all four bases).

For our comprehensive jackknife test, we elected to use
the Gibbs sampling program available at http://bayesweb.
wadsworth.org/gibbs/gibbs.html to facilitate reproducibility
of our procedure.

€Y

mg ;= log,

Logistic Regression

Standard commercial statistics packages are available for the
use of LRA. We used a modified version of the logistic regres-
sion routine of the software package octave (a mathematical
software package freely available from http://www.che.
wisc.edu/octave/) to perform multivariate logistic regression.
The octave logistic regression routine including documenta-
tion is available at http://www.cgb.ki.se/krivan/liver/liver.
html.

Using a maximum likelihood procedure, the function

4
ePo~+ 2 Bixi

i=1

)= )]
1+ ePot ’:21 Bixi

is fit to the 4 + 1 dimensional training data given by {(x;)), j
=1,..., N}, in which N is the number of positive and nega-
tive training sequences (N = 1820). For clarity, the logistic
regression procedure is applied to a set of vectors containing
the best score obtained with each transcription factor model
on the collection of 200-bp sequences (positive and negative
training sequences).

Phylogenetic Footprinting

We used the program DBA (DNA Block Aligner, Jareborg et al.
1999) with the default parameter settings to determine local
sequence similarity between human and rodent DNA se-
quences in single-gene comparisons. The screening of se-
quences on a genomic scale was performed with BLAST (ver-
sion 1.4.7), as the use of DBA would have been computation-
ally impractical. The cutoff for the E value was set to E =
1079, and we used the parameters M = 1, N = — 2.

Screening of Genomic Sequence

The pool of available genomic sequence from rodents (242
Mbp, minimum length 300 bp) was screened for putative liver
regulatory modules (8492 detected). The rodent positives
were masked for repetitive sequences and rescreened with the
liver model (7192 modules retained). The putative modules
were compared against the human genomic sequences avail-
able in the EMBL database to determine whether similar se-
quences were present (revealing 11,131 human entries similar
to the rodent queries). The human sequences were screened
with the liver model to restrict the set to regions that are
conserved in putative function as well as sequence (314 hu-
man entries). In the final step, the set of human-rodent se-
quence pairs was consolidated (by intrinsic BLAST compari-
sons) to remove redundancy (147 final sequences).

Access to Data

Access to data as well as the submission of sequences for
analysis with liver and muscle regulatory region models is
possible via http://www.cgb.ki.se/krivan/liver/liver.html.
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