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ABSTRACT

Summary: SAGE data are obtained by sequencing short
DNA tags. Due to the mistakes in DNA sequencing, SAGE
data contain errors. We propose a hew approach to identify
tags whose abundance is biased by sequencing errors.
This approach is based on a concept of neighbourhood:
abundant tags can contaminate tags whose sequence
is very close. The application of our approach reveals
that moderately abundant tags can be generated by
sequencing errors uniquely. It also allows for detecting
correct rare tags.

Availability: Software is available only to non-profit enti-
ties and for non-commercial purposes upon request.
Contact: Georg.Feger@serono.com

Serial Analysis of Gene Expression (SAGE) is a method
for estimating the abundance of gene transcripts (mRNA)
(Velculescu et al., 1995). SAGE is based on the isolation
of short sequence tags characteristic of each individual
transcript. The sequence tags are then concatenated into
long DNA molecules thus facilitating their identification
by conventional DNA sequencing. By counting these tags
one can estimate the expression level of transcripts in a
cell. However, due to the inaccuracy of the DNA sequenc-
ing process, SAGE data contain errors: moderately abun-
dant or rare tags may have their observed abundance sub-
stantially modified. Moreover, non-existing tags can be
created. We describe two methods that detect those tags
whose abundance has a large probability to be strongly
biased by sequencing errors. Stollberg et al. (2000) stud-
ied the macroscopic impact (library-wide) of sequencing
errors in details. We focus on techniques to compute in-
formation at the tag level. Our approach is based on the
following idea: an abundant tag, or the combination of sev-
eral tags, can significantly modify the observed abundance
of tags with close sequences because of sequencing errors.

Let Lt be the set of sequenced SAGE tags (library).
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For the sake of clarity, we consider a simple definition
of the set of tags ¢ € Lt that can generate a given
tag t € Lt because of sequencing errors. We name f
neighbourhood the set of such tags g. We assume that
sequencing errors are independent for each base and the
error rate is 1%. Then the probability to have two or
more errors in a 10-base tag is 1 — 0.99'0 — 10 x
0.01 x 0.99° = 0.43%. The probability to have 1 error
or more is 1 — 0.99'0 = 9.56% >> 0.43%. Hence
we define the set N(¢) (¢ neighbourhood) as the tags
q € L that are at an edit distance equal to 1 from ¢
(Gusfield, 1997). The probability to have one error only is
10 x 0.01 x 0.99° = 9.13%. Method 1 is the following:
(a) For each tag t € Lr, we list every tag g € N(1).
(b) We compute the average contribution v(¢) of tags
g € N(t) to the observed abundance of . We have v(t) =
quN(t) %ﬁg;’nm, where count(q) is the observed
abundance of ¢ and # denotes the cardinality. The factor
0.0913/#N(q) is the average contribution of g to each
of its neighbours. (c) Let C € R} be a chosen cut-off.

Mark as suspect every tag ¢ such that %&0 > C. We
further study the status of tags ¢t € L1 with no neighbour,
i.e. N(t) = (. Let us estimate the probability that such a
tag has been generated by sequencing errors only. There
must exist B > count(?) tags in the neighbourhood of ¢
before sequencing, all erroneously sequenced (N (1) = 0)
with probability 0.0956Z. Therefore, ¢ is correct with
probability at least 1 — 0.0956°°""") " Accordingly, a
tag with count =1 and no neighbour is correct with
probability 90.44%.

In practice, we use more realistic models of sequencing
errors. For example, one can consider the number of
ways ¢ € N(t) can be erroneously sequenced as ¢ to
weight the contributions of ¢. For instance, ACGTT can
be transformed into ACGGT either by substituting a G for
the first T or by inserting a G before or after the existing G.
A more refined model could make use of phred scores
(Ewing et al., 1998): for each copy of a tag ¢, add specific
tags ¢ into N(¢) and weight their probable contribution
to ¢t based on ¢ phred score (parts of ¢ sequence that
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Table 1. A simple example with four tags. Tags 2 and 3 are at edit distance 1
from tag 1. s = 0.0913 is the probability to have one error and r = 1 —s. We
observe that tag 2 is probably entirely due to sequencing errors, while tag 3
has its real abundance probably quite different from its observed abundance

Tag y A X

ATTACATGCG 100 r s s 0 109.5
CTTACATGCG 5 s/2 T 0 0 0.0
ATTACATTGC 10 s/2 0 r 0 55
TCAGGTCGAT 1 0 0 0 1 1.0
Total 116 116.0

are very reliable exclude certain neighbours). See also
Margulies (2000). More generally, by introducing P (t|q),
t,q € L, the probability that g is erroneously sequenced
as t, we have v(.t) = quLT,.#, P (t|g)count(q). .So
stated, Method 1 is a generalization of a method applied
by Velculescu et al. (1999, supplementary material): more
complete treatment of tags with count = 1 and arbitrary
error model.

Method 1 considers the inter-tag contributions indepen-
dently. A natural extension is to consider every contri-
bution simultaneously: a given tag contributes to the ob-
served abundance of other tags and, at the same time, re-
ceives contributions also. This is a more realistic model of
the dynamics of sequencing errors.

We introduce Method 2, intended to estimate the
original tag abundance before sequencing according to
such a simultaneous model. A comparison with the
observed tag abundance allows for detecting suspect tag
abundances. Let N be the number of detected tags and
y € RN the corresponding observed abundances. We
denote by tag(i) the i tag whose abundance is y;. We
want to compute x € RV, an approximation of the
tag abundances before sequencing. We build a linear
system Ax = y, where A is a N x N matrix with
elements ¢; ;. For each detected tag t = tag(j) we set the
corresponding column of A, i.e. we set elements in A to
represent the average contribution of ¢ to its neighbours:
a;,j = P(tag(i)|tag(j)),i = 1,..., N. See Table 1 for
an example computed with the simple model used in the
description of Method 1. The observation concerning the
reliability of rare tags is the same as for Method 1. Since
P(t|g) is a probability, i.e. qusr P(glt) = 1,Vt € St,
it is straightforward to prove that the total number of tags
is conserved. Namely, Z,N=1 yi = Z,N=1 x;. The linear
system Ax = y has a unique solution (Gershgorin’s
Theorem shows that every eigenvalue is different from
zero) and is sparse. It is efficiently solved by Lanczos-type
methods (Saad, 1996) because it is diagonally dominant.
We had very good results with BICGSTAB algorithm.

From the publicly available data set CGAP (http:
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Fig. 1. Number of tags having a given relative difference between
observed and estimated abundance. Continuous line: number of
tags. Circle: less than 10%. Square: between 10 and 30%. Diamond:
between 30 and 60%. Triangle: between 60 and 100%. Cross: more
than 100%. Tags having an abundance larger than 18 change by less
than 10%.

/www.ncbi.nlm.nih.gov/CGAP/), we used as an example
a Homo sapiens normal white matter SAGE library
(ftp://ncbi.nlm.nih.gov/pub/sage/extr/SAGE_BB542_
whitematter/ditags/). After removing repeated di-tags,
we found 31454 different tags (93748 total tags). By
applying Method 2 (with an error model where the
number of ways ¢g can be erroneously sequenced as ¢ is
taken into account, see above), we estimated the relative
error of every tag count. The result is shown in Figure 1.
The computation time for BB542-whitematter was 12 s
(SGI R10000 processor at 250 MHz).

Coupled with improved gene-tag assignment (Caron et
al.,2001), the approach we presented improves confidence
in SAGE data analysis and the accuracy of predicted
transcriptomes. Our statistical methods are particularly
powerful when analyzing large SAGE libraries or pools
of several SAGE libraries (Velculescu et al., 1999).
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