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ABSTRACT

Consensus pattern and matrix-based searches
designed to predict cis-acting transcriptional regula-
tory sequences have historically been subject to
large numbers of false positives. We sought to
decrease false positives by incorporating expression
profile data into a consensus pattern-based search
method. We have systematically analyzed the
expression phenotypes of over 6000 yeast genes,
across 121 expression profile experiments, and
correlated them with the distribution of 14 known
regulatory elements over sequences upstream of the
genes. Our method is based on a metric we term
probabilistic element assessment (PEA), which is a
ranking of potential sites based on sequence similarity
in the upstream regions of genes with similar expres-
sion phenotypes. For eight of the 14 known elements
that we examined, our method had a much higher
selectivity than a naive consensus pattern search.
Based on our analysis, we have developed a web-
based tool called PROSPECT, which allows
consensus pattern-based searching of gene clusters
obtained from microarray data.

INTRODUCTION

The availability of numerous completely sequenced eukaryotic
genomes and the constantly expanding amount of DNA micro-
array data have made computationally based strategies aimed
at deciphering genetic regulatory networks more feasible. To
date, computational analysis of transcriptional mechanisms has
largely been focused on identification of potential regulatory
factor-binding sites in the DNA sequences upstream of genes
(1-4). The methods used have been quite varied, ranging from
sophisticated Gibbs sampling-based algorithms to more ‘brute
force’ counting and analysis of fixed length oligonucleotide
words (so-called kmer or ktuple word searching). Subsequent
work is necessary to validate the cis-acting elements predicted
by these methods. However, searches of this sort nonetheless
serve a purpose, in that they provide experimental targets for
‘wet bench’ researchers.

Another method of element prediction which was frequently
used before the advent of complete genome sequences and
expression profile data is the consensus sequence or matrix
method (5). Theoretically, by searching upstream regions for
sequences which have previously been shown to act as
cis-regulatory elements, the number of false positive predic-
tions should be greatly reduced. In practice, the consensus
sequence or matrix scan method is often just as inefficient as
the newer methodologies. Lavorgna et al. (6) have described
some methods to reduce the high rate of false positives, by selec-
tively excluding known non-regulatory sequences. Unfortunately,
this method fails to address the real cause of the false positives,
which is that known cis-acting element sequences are often
inadequately defined and often do not contain sufficient infor-
mation to allow them to be used to predict sites in a large
(e.g. genome sized) amount of sequence.

The advent of large-scale transcription or expression
‘profiles’ allows the refinement of ‘classical’ consensus
pattern/matrix-based searches into a useful predictive tool.
First, by applying clustering techniques to the data from the
expression profile studies, we can obtain groups of genes that
are likely to be co-regulated (i.e. likely to have functionally
similar cis-acting elements in their upstream regions). Addi-
tionally, the availability of complete genome sequences means
that it is trivially possible to search these upstream sequences
for sequences common to some or all of them. It has been
suggested that this combination of expression phenotype and
sequence similarity could lead to a large increase in the
efficiency of cis-acting element prediction. This combinatorial
approach has been critical to some recent regulatory element
prediction techniques (7,8), but none of the described techniques
were systematically evaluated to determine if known elements
were detected with a higher selectivity than in naive searches.

In this paper we report on a technique that combines clustering
of expression profile data with sequence similarity searches of
upstream regions. We have systematically analyzed the correla-
tion between expression phenotype and presence of known
regulatory sequences, across 121 transcript profile experi-
ments, with 14 different known elements. In the method that
we describe, a binomial distribution model is used to give
potential sites a probabilistic rank based on the observed
degree of sequence similarity in clusters of genes with a similar
expression phenotype. We refer to this metric as probabilistic
element assessment (PEA). Analysis of the results of applying
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Table 1. Summary of data sources and clustering in the PROSPECT system: gene expression profile datasets

Dataset Description Experiments
DeRisi et al. (12) Diauxic shift, repressor TUP deletion, activator YAP1 overexpression 9
Eisen et al. (13), Lashkari et al. (14) Cell cycle elutriation, cdc15 arrest, sporulation, sporulation ndt80 knockout, heat 14
shock, DTT shock, cold shock
Chu et al. (15) Sporulation, sporulation ndt80 knockout 9
Holstege et al. (16) Transcription factor mutant, SAGA chromatin modification complex mutant 11
Spellman ez al. (17), Cho et al. (18) Cell cycle o-factor arrest, cell cycle elutriation, cdc15 arrest, cdc28 arrest 77
Jelinsky and Samson (19) Alkylating agents, methyl methanesulfonate 1
Total 121

The original citations for the various datasets used in the PROSPECT system, as well as a description of the type of experiment that gave rise to
the data and the number of individual ‘experiments’ in each dataset (where an experiment reflects comparison of one ‘experimental’ expression

state with a ‘control’ baseline state) are listed and described.

our method showed that sites with a favorable PEA (<0.1)
were at least two to five times more likely to represent experi-
mentally confirmed regulatory sites, relative to a typical
consensus pattern or matrix-based search.

MATERIALS AND METHODS

Consensus pattern and sequence nomenclature

All consensus patterns presented and referred to in this work
are encoded using the standard TUPAC nucleotide symbols
(e.g. W at a given position in a consensus indicates that either
A or T may be present) (9). Additionally, all nucleotide
sequences are shown with 5°—3’ polarity relative to the sense
strand of the downstream open reading frame. We have incor-
porated data from both SCPD (10) and TRANSFAC (11) in
this study (see below). SCPD assigns names to regulatory
element sequences, while TRANSFAC is organized in terms of
the regulatory factor that recognizes the element. Because of
the different organizations of these two databases, merging
their name spaces was not attempted; instead, we have chosen
to use the SCPD naming scheme.

Regulatory element dataset

We prepared a dataset of Saccharomyces cerevisiae tran-
scriptional regulatory elements by merging data from the
SCPD and TRANSFAC databases. After starting with
50 consensus patterns from the SCPD, we merged in by
manual inspection 298 yeast sites from the TRANSFAC
database. After redundancies were eliminated, there were
149 different recognition sites. Because some sites consist of
patterns that cannot be combined into a sensible consensus,
these 149 consensus patterns correspond to 66 site/factor
names. Since several sites only contained data for single-
stranded sequences, we created opposite strand sequences
where necessary, resulting in 271 patterns on both strands.
After duplicated patterns had been removed, the dataset
contained a total of 139 unique patterns.

Upstream sequence dataset

We chose to focus our search for regulatory elements on the
sequences upstream of open reading frames in S.cerevisiae.
Using a tool developed by Wolfsberg et al. (http://
www.nci.nlm.nih.gov/CBBresearch/Landsman/Cell_cycle_data/

upstream_seq.html), we extracted 1000 bp 5’ of the translation
start site of each of 6194 yeast open reading frames. Seven of
these sequences (YALO69W, YFLO67W, YFLO68W,
YJR162C, YKL225W, YMR326C and YNRO77C) do not con-
sist of a full 1000 bases, because they occur close to a chromo-
some end. Since there is some question about the ability of
distant elements to effectively influence transcription, we also
prepared datasets consisting of sequences of 600 and 200 bases
upstream of each open reading frame. The subsequent analysis
was independently carried out on all three datasets, and when
results differed, it will be mentioned.

Expression profile dataset

We constructed a database, GExDB-Yeast, from publicly
available data that had been presented in eight different manu-
scripts (12-19; summarized in Table 1). Four of these manu-
scripts reported time course experiments involving multiple
samples compared to a common reference or base sample.
Once redundancies were eliminated, we obtained 121 experi-
mental values for each yeast gene, 103 of which came from
time course-based experiments.

Internally, gene data points in GExDB are stored as the ratio
between two values, the value for the gene in the experimental
state and the value for that same gene in the reference state
[with the exception of the data of Cho et al. (18), where a
single value is available in the original work]. These experi-
mental and reference state values are expressed in units of bits
and have been calibrated against an experiment- or time point-
specific background value. As per Spellman et al. (17), the
sum of all values within a particular experiment is normalized
to 0.

The results of subsequent clustering of these expression
profile experiments were collected in a linked database,
GExCluster, which contains the results of clustering the
expression profile data via a Pearson correlation coefficient-
based hierarchical clustering algorithm, as described by Eisen
et al. (13) and implemented by us. We empirically derived the
cluster cut-off by examining the effects of using increasing
correlation coefficients (summarized in Table 2), finally
choosing a value of 0.7. This value was chosen because it was
the smallest value that resulted in co-clustering of the majority
of the histone genes (which we chose because they represent a
distinct expression coherency with high variances). The
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Table 2. Summary of data sources and clustering in the
PROSPECT system: increasing the correlation coefficient cut-
off increases the number of gene clusters

Cut-off Gene clusters
>0.1 185

>0.3 547

>0.5 1531

>0.7 3998

>0.9 6272

1.0 6386

The numbers of gene clusters obtained with increasing correla-
tion coefficient cut-off thresholds are shown. The 0.7 line
(bold) is the cut-off used to cluster genes in the GExCluster
database.

Table 3. Summary of data sources and clustering in the
PROSPECT system: size distribution of gene clusters

Size Number Genes
1 3509 3509
2-10 459 1377
11-100 27 616
101-400 3 884
Total 3998 6386

The distribution of cluster sizes (in terms of genes per cluster)
and the number of genes included at a correlation coefficient
cut-off of 0.7 are shown.

chosen correlation coefficient cut-off of 0.7 clusters nine of the
10 histone genes together (H1 and both copies of H2A, H2B,
H3 and H4). The failure of the other histone locus to co-cluster
is due to a lack of data in some of the expression profile experi-
ments (data not shown). Using the empirically determined
cut-off value, the GExCluster database contains 6386 genes in
3998 clusters, an average of 1.6 genes/cluster. The largest
observed cluster contains 377 genes; the smallest clusters
contain only one gene (see Table 3 for additional data about the
size distribution of the clusters obtained).

Matrix search

A typical type of element search is carried out by looking for
matches to patterns specified as matrix files. While relatively
few (only 24) of the patterns in SCPD are available in this
form, we chose to also characterize the effects of a matrix
search in combination with PROSPECT and to compare them
to the results obtained with PROSPECT alone. These searches
were carried out using the MatInd/MatInspector software
package (5) (http://www.gsf.de/biodv/mtinspector.html).
SCPD patterns were imported into Matlnd and then
Matlnspector was used to search upstream regions without a
primal core search and with a low cut-off (0.7) for all matrices,
in an attempt to match all known genes. After this initial step,
we reiterated, raising the search cut-off until we began to fail to
detect matches to known regulatory sites.

SCPD & TRANSFAC
Element Patterns

GExDB & GExCluster
Expression Patterns

PROSPECT
Search Engine

Graphical User
Interface

Yeast Genome

SGD .
Gene Annotation Entrez Genomes

Figure 1. General architecture of the PROSPECT system. The PROSPECT search
engine integrates sequence data from Wolfsberg et al. (http://www.ncbi.nlm.nih.gov/
CBBresearch/Landsman/Cell_cycle data/upstream_seq.html), cis-acting element
sites and consensus sequences from SCPD (10) and TRANSFAC (11) and expres-
sion pattern data in GExDB and GExCluster (see text). A web-based graphical
user interface provides access to that data, as well as links to SGD (20) and
Entrez Genomes (21).

RESULTS AND DISCUSSION

PROSPECT: correlation between expression patterns and
element distributions on upstream sequences

We hypothesized that detection of a particular known
cis-acting element in all or many of the genes in a particular
expression cluster would predict that the genes were co-regulated
via that element. Furthermore, we hypothesized that the quality
of this prediction would be directly proportional to the number
of genes in the cluster. With these two hypotheses in mind, we
developed a new tool, PROSPECT, which combines a typical
consensus pattern search with the results stored in GExDB and
GExCluster. This system is schematically outlined in Figure 1.
Besides the basic components depicted in the diagram,
PROSPECT is also linked to gene level annotation information
in the Saccharomyces Genome Database (SGD) (20) and to
genome level annotation information in the Entrez Genomes
database (21).

Evaluating the probability of element conservation in
expression clusters

The basic concept in the search step of PROSPECT is an
expression-limited element search method, where a pattern-
based search is made against a subset of the genes represented
by each expression cluster. When a pattern is observed more
often than expected, this indicates that the pattern may be a
regulatory element (or part of a regulatory element) which
plays a role in determining co-expression of the genes in the
cluster. The expectation value is calculated as a function of the
size of the group of co-expressed genes, using a model based
on a binomial distribution. When a given pattern occurs more
than once in an upstream sequence, it is only counted once,
i.e. pattern counting is done on an all-or-none basis. This
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Figure 2. Example of a PROSPECT search. The MCM1 gene product is
known to recognize an element upstream of the SWIS5 gene. Previously gener-
ated clusters (based on data from GExDB and stored in GExCluster) contain a
cluster of the SWIS5, CLB2, ALKI, CYK2 and YLR190W genes. Each of
these genes contains at least one MCML site in the sequence upstream of the
start codon.

constraint, which fails to adequately model the known
biological situation (where multiple elements are generally
more indicative of regulation than single elements) is a limita-
tion of current statistical techniques, which cannot easily
handle evaluation of multiple element data. It is important to
note that the all-or-none counting method that was used will
generally result in an under-estimation of element frequencies,
with a concomitant under-estimation of statistical significance.
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The PEA is calculated according to the following equation:
P(k=x)=XN,_ [Nmi(1 —m)N-i 1

where P is the probability of finding x or more sequences that
contain a given pattern by chance, assuming a binomial distri-
bution with expected value m over an expression cluster with
N members. The expected value (m) is estimated from the frac-
tion of total sequences that have the pattern.

For example, in Figure 2 a search for the MCM1 element
(CCNNNWWRGG) is shown. The SWI5 promoter is found to
have a match to the MCM1 consensus pattern, confirming the
experimental finding that SWI5 is regulated by MCMI1 (22).
When the search is extended to the set of genes that SWI5
clusters with, matches to the MCM 1 consensus pattern are also
found in the upstream regions of the other four genes in the
cluster. One of these other genes, CLB2, is also known to be
regulated by MCM1 (22); at this time, no data are available on
whether the remaining three genes are also regulated by
MCMI. Additionally, it is known that genes regulated by
MCMI1 have additional regulators. Consistent with these
observations, we also find that all five upstream regions of the
genes in the expression group contain a match to the consensus
pattern of the SFF element, as reported by Spellman et al. (17).
This suggests that the PROSPECT search technique may be
useful in deciphering combinatorial regulatory networks.

In order to evaluate the effect of varying PEA cut-off values
on the results we obtained, we examined how decreasing the
PEA (making the search more selective) affected both the
number of elements and clusters identified and what selectivity
increase over a random background level we obtained. As
summarized in Table 4, we found that decreasing the PEA led,
as expected, to a decrease in the number of genes and clusters
that were identified as containing matches to the MCMI1
consensus pattern. It is important to note that the decrease in
the number of elements predicted by PROSPECT was less
dramatic than the decrease in the number of elements expected
to be found. This is significant, as the expected number of
elements is equivalent to a classical pattern search, suggesting
that the PROSPECT search technique greatly reduces the
number of false positives found in a traditional pattern search.
Unfortunately, since the location of all ‘real’ occurrences of

Table 4. PROSPECT searches have higher selectivity than simple pattern-based searches

PEA cut-off Candidate genes Annotated sites correctly identified Selectivity ratio
(clusters)
PROSPECT (predicted) Pattern search (expected)
1.0 2498 (1703) 25 25.00 1.0
<0.5 1722 (1460) 21 17.23 1.2
<0.4 1712 (1457) 21 17.13 1.2
<0.3 285 (86) 5 2.85 1.8
<0.2 255 (80) 5 2.55 2.0
<0.1 128 (23) 5 1.28 3.9
<0.01 5(1) 2 0.05 40°

This table summarizes the results of searching for matches to the MCM1 consensus at a variety of PEA levels. The Candidate genes (clusters)
column gives the number of genes and clusters searched (those for which PROSPECT detected a match to the MCMI1 consensus) at the given
PEA level. The Annotated sites correctly identified columns give the number of annotated sites (10; see also Materials and Methods) correctly
predicted by PROSPECT and the expected number that would have been detected in the same set of genes by a typical pattern-based search. The
final column gives the selectivity ratio, which measures the increase in selectivity given via the PROSPECT method (see Results for details).
#This number is misleadingly high and should be interpreted with caution. The example discussed in the text is more realistic.
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any given element (i.e. examples that are recognized and
bound by a protein to produce a regulatory event) is unknown,
it is not possible to calculate the number of observed false posi-
tives. We can determine the number of false negatives, i.e. the
number of known elements that are not detected by the
PROSPECT search, and we have found this to be equal to or
less than the number of false positives produced by a tradi-
tional pattern search in all cases. For example, Table 4 shows
data for the MCM1 element, which has 25 known occurrences.
At a PEA of <0.5 the PROSPECT search fails to identify four
of the 25, while a traditional pattern search would have missed
seven.

PROSPECT is more selective than a simple consensus
pattern search

Because the initial MCMI1 experiment suggested that a
PROSPECT search could be significantly more selective than
a naive pattern search, we wanted to characterize the performance
of the method over several patterns. In order to accomplish
this, we elected to analyze a dataset containing numerous
annotated (experimentally confirmed) regulatory sites and
quantify how many were detected, as well as how many false
positives were predicted. Since the SCPD contains a substantial
number of annotated sites (580) distributed over a significant
number of genes (205), we selected it as the dataset for this
evaluation. We picked the 14 clements with the highest
numbers of annotated binding sites in the 1000 bp upstream
region that we were going to search in. These elements are
ABF1 (19), GALA4 (6), GCN4 (9), GCR1 (6), HSE/HSTF (6),
MATo2 (7), MCB (6), MCM1 (25), MIG1 (8), PDR3 (7),
RAP1 (15), REB1 (12), repressor of CAR1 (13) and TATA
(16); the numbers of genes which contain a particular element
in their upstream region are indicated in parentheses.

In order to evaluate the two element prediction methods
relative to each other, we devised a metric which we term the
selectivity ratio. Selectivity for a particular method is
measured as the fraction of correctly predicted elements (out of
all elements predicted); the selectivity ratio is then the ratio of
the selectivity of the PROSPECT method to the selectivity of
the naive consensus pattern search. Consequently, ratios >1
indicate that the PROSPECT method is more sensitive than the
basic search, while ratios <1 indicate the opposite. For
example, as described in the second last line of Table 4, we
correctly predicted five elements out of 128 candidates with
the PROSPECT method, while the standard consensus pattern
search correctly predicted 25 elements in 2498 candidates, so
the selectivity ratio is calculated as:

(5/128)/(25/2498) = ~3.9 2

The data presented in Figure 3 demonstrate that the
PROSPECT search method generally produces a large increase
in search selectivity, especially at lower PEA values. Notably,
searches for the MCM1 and RAP1 elements were more than
five times more selective than a naive consensus pattern search
at a PEA of 0.01. In contrast, lowering the PEA cut-off did not
improve the selectivity when searching for certain elements,
such as repressor of CAR1. Furthermore, the selectivity ratios
in searches for the ABF1 element plateau at a value of ~2.0 at
PEA levels <0.4.

Detailed numerical data for all 14 elements (at a PEA >0.1)
is presented in Table 5A. Both consensus patterns from SCPD
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Figure 3. PROSPECT searches are more selective than traditional pattern-
based searches. This graph shows selectivity ratios for a number of different
known regulatory element patterns as a function of PEA cut-off level. Note that
not all element patterns were tested at all PEA cut-offs (see for example Table 3).

and individual patterns from TRANSFAC were used in the
searches. Because the number of genes containing annotated
sites was small (as low as six genes), we added additional
regulatory data obtained from the Yeast Protein Database
(YPD) (23) so as to improve the statistical calculations; this
data is presented in Table 5B. Because the YPD data is in the
form of frans-acting factors and the genes they regulate, we
needed to map these factor names onto our element patterns.
Note that in some cases the site names obtained from YPD do
not identically match named patterns from SCPD. Three
different selectivity ratios were calculated for three different
upstream regions, of 200, 600 and 1000 bp.

Consistent with the initial MCM1 experiment, we found that
the PROSPECT search method was significantly more selec-
tive than the naive pattern search. The top four elements were
consistently observed to have high selectivity ratios (typically
>2). Five other elements (REB1, GAL4, MIG1, PDR3 and
repressor of CAR1) had somewhat lower selectivity, but their
ratios were almost always >1. Unfortunately, it was necessary
to exclude three elements (HSE/HSTF, GCR1 and GCN4) in
some cases, because their consensus patterns matched a
significant fraction of the available gene sequences (>5000 out
of ~6000 sequences), which skewed the statistical calculations.
As might be expected, these three elements have the least
stringent consensus patterns of the 14 elements we tested,
suggesting that a PROSPECT search may not be appropriate
when dealing with inadequately defined sites.

Additionally, we observed that addition of the matrix pattern
information produced a slight, but noticeable, increase in
selectivity. This can be seen in the data for MCB, MIGI,
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Table 5. Summary of elements and data from the analysis

Element name Sequence region (bp) Candidate genes from search type Selectivity ratios
Pattern PROSPECT Matrix + PROSPECT PROSPECT Matrix + PROSPECT
(A) Site data derived from SCPD
MCM1 200 440 (7) 268 (6) 65 (2) 1.4 1.9
600 1631 (22) 114 (5) 379 (1) 33 NA
1000 2498 (25) 128 (5) 366 (1) 39 NA
RAPI1 200 338 (3) 186 (0) 85(3) ND 4.0
600 1231 (13) 176 (6) 622 (8) 32 1.2
1000 2035 (15) 205 (7) 715(7) 4.6 NA
MCB 200 507 (4) 319 4) 116 (3) 1.6 3.3
600 1218 (6) 200 (3) 246 (5) 3.0 4.1
1000 1677 (6) 214 (3) 326 (6) 39 5.1
ABF1 200 837 (8) 208 (6) 210(7) 3.0 3.5
600 2144 (15) 458 (7) 425 (8) 2.2 2.7
1000 2974 (19) 607 (8) 333 (4) 2.1 1.9
REBI 200 494 (2) 363 (0) 217 (2) ND 2.5
600 1097 (10) 314 (4) 360 (2) 1.4 0.6
1000 1440 (12) 340 (4) 418 (5) 14 14
MIG1 200 143 (3) 117 (3) 83 (3) 1.2 1.7
600 414(7) 247 (6) 225 (6) 14 1.6
1000 652 (8) 34(0) 315(6) ND 1.6
GAL4 200 51(2) 35(2) 5(2) 1.5 10.2
600 214 (6) 149 (6) 21(6) 14 10.2
1000 349 (6) 230 (5) 27 (6) 1.3 12.9
PDR3 200 24 (1) 17 (1) 40 (1) 2.0 0.8
600 118 (7) 97 (7) 144 (7) 1.2 0.8
1000 182 (7) 142 97) 206 (7) 1.3 0.9
Repressor of CAR3 200 90 (3) 75 (3) S51(1) 1.2 0.6
600 292 (11) 212 (5) 119 (3) 0.6 0.7
1000 471 (13) 292 (7) 33(0) 0.9 ND
MATo2 200 554 (1) 313 (1) 143 (0) 1.8 0.0
600 1476 (7) 99 (0) 199 (0) ND ND
1000 2178 (7) 103 (0) 364 (0) ND ND
TATA 200 2497 (15) 128 (0) 141 (0) ND ND
600 4275 (16) 66 (0) 49 (0) ND ND
1000 4944 (16) 327 (0) 30 (0) ND NA
HSE, HSTF 200 1641 (3) 95 (0) NM ND NM
600 4042 (6) 39(0) ND
1000 5225 (6) 27 (0) NA
GCRI1 200 2778 (4) 75 (0) 119 (0) ND ND
600 5409 (6) 209 (0) 167 (0) NA ND
1000 6016 (6) 906 (0) 227 (0) NA NA
GCN4 200 5177 (8) 672 (0) 38 (0) NA ND
600 6162 (9) 717 (0) 216 (1) NA 32
1000 6193 (9) 881 (0) 193 (0) NA NA
(B) Site data derived from SCPD and YPD
MCM1 200 440 (8) 268 (7) 65 (2) 1.4 1.7
600 1631 (24) 114 (6) 379 (1) 3.6 NA
1000 2498 (28) 128 (6) 366 (1) 4.2 NA

RAPI 200 338 (3) 186 (0) 85 (3) ND 4.0
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Table 5. Continued

Element name

Sequence region (bp) Candidate genes from search type

Selectivity ratios

Pattern PROSPECT Matrix + PROSPECT PROSPECT Matrix + PROSPECT
600 1231 (14) 176 (7) 622 (10) 3.5 14
1000 2035 (18) 205 (9) 715 (9) 5.0 NA
MCB 200 507 (23) 319 (20) 116 (17) 1.4 32
600 1218 (33) 200 (16) 246 (23) 3.0 3.5
1000 1677 (33) 214 (16) 326 (24) 3.8 3.7
ABF1 200 837 (11) 208 (7) 210(7) 2.6 2.5
600 2144 (19) 458 (8) 425 (9) 2.0 24
1000 2974 (23) 607 (9) 333(5) 1.9 1.9
REBI1 200 494 (20 363 (0) 217 (2) ND 2.5
600 1097 (10) 314 (4) 360 (2) 1.4 0.6
1000 1440 (13) 340 (4) 418 (8) 1.3 2.1
MIGI 200 143 (6) 117 (6) 83 (6) 1.2 1.7
600 414 (15) 247 (12) 225 (14) 1.3 1.7
1000 652 (18) 34.(1) 315(14) ND 1.6
GAL4 200 51.(3) 35(2) 5(2) 1.0 6.8
600 214 (7) 149 (6) 21 (6) 1.2 8.7
1000 349 (7) 230 (5) 27 (6) 1.1 11.1
PDR3 200 24 (1) 17 (1) 40 (1) 2.0 0.8
600 118 (7) 97 (7) 144 (7) 1.2 0.8
1000 182 (7) 142 (7) 206 (7) 1.2 0.9
Repressor of CAR3 200 90 (9) 75(9) S51(1) 1.2 0.2
600 292 (21) 212 (15) 119 (3) 1.0 0.4
1000 471 (24) 292 (17) 33 (0) 1.1 ND
MATo2 200 554 (1) 313 (1) 143 (0) 1.8 ND
600 1476 (7) 99 (0) 199 (0) ND ND
1000 2178 (7) 103 (0) 364 (0) ND ND
TATA 200 2497 (15) 128 (0) 141 (0) ND ND
600 4275 (16) 66 (0) 49 (0) ND ND
1000 4944 (16) 327 (0) 30 (0) ND NA
HSE, HSTF 200 1641 (8) 95 (1) NM 22 NM
600 4042 (12) 39 (0) ND
1000 5225 (14) 27 (0) NA
GCRI1 200 2778 (9) 75 (0) 119 (0) ND ND
600 5409 (15) 209 (0) 167 (0) NA ND
1000 6016 (15) 906 (3) 227 (0) 1.3 NA
GCN4 200 5177 (44) 672 (5) 38 (2) NA 6.2
600 6162 (50) 717 (6) 216 (3) NA 1.7
1000 6193 (50) 881 (8) 193 (3) NA NA

Numbers under the Candidate genes from search type columns show the number of candidates predicted with each method in each set of upstream sequences.
Numbers in parentheses are the annotated elements (10; see also Materials and Methods) that were correctly predicted. The PEA value was <0.1 for all searches.
ND, no data obtained at this threshold; NA, not applicable for the analysis due to the large number of candidates detected in the pattern search; NM, no matrix

available for this element.

GAL4, GCR1 and GCN4 (Table 5); it is most evident for
GALA4. The patterns for these elements have less information,
relative to the other elements that have higher selectivity ratios,
suggesting that inclusion of a matrix search before
PROSPECT analysis improves selectivity because it provides
additional information in the pattern search step.

Finally, we observed a distinct effect of the length of the
sequence analyzed. Generally speaking, the datasets with
longer sequences had higher selectivity than datasets with
shorter sequences. Intuitively, it seems likely that this is due to
the increased probability of a false positive match as the
sequence length increases; since these matches are less likely
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Figure 4. PROSPECT is available as a web-based element search tool. This diagram depicts the results of a PROSPECT search for MCM 1-binding sites. In the
main list view, genes containing a match to the MCMI1 consensus are returned, sorted by PEA value. The Group links link individual genes to their expression
cluster; E links provide a view of the comparison of the expression pattern for a particular gene to that of the factor that recognizes the element that was searched
for; N links point to an alternative expression comparison method which uses a distance-based metric to group related expression patterns. A detailed view of

element distribution on the upstream sequences is shown.

to be detected by the PROSPECT search, the overall selectivity
increases. There was one notable exception to this pattern, the
selectivity ratio for the ABFI element decreased with
increasing sequence length. This likely reflects a need for
ABF1 elements to be positioned very close to the start of tran-
scription, which is consistent with the high positional bias of
the element as reported in the literature (2).

Web-based PROSPECT search tool

In order to maximize its utility, we have made a version of
PROSPECT available on the World Wide Web at http:/
www.ncbi.nlm.nih.gov/CBBresearch/Postdocs/Wataru/

PROSPECT/. Figure 4 shows the output from a search for
MCM1 sites in the set of 1000 bp upstream regions. Genes can
be searched for elements based on the name of the element or
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via a keyword-based mechanism. Alternatively, patterns can
be specified via a regular expression-based mechanism. Re-
sults are returned sorted in order of ascending PEA values of
the found matches to the element pattern. Gene names are hy-
perlinked to further information in the Saccharomyces Ge-
nome Database (SGD) (20).

Additionally, from the results page it is possible to search for
additional genes with expression patterns similar to the current
gene. This ‘expression neighbor search’ is based on pre-calculated
correlation coefficient scores from the initial clustering of the
microarray dataset. A graphical interface that displays the
positions of pattern matches on the upstream sequence is also
provided and hyperlinked to the Entrez Genomes database
(21), making it possible to obtain information about gene
distributions and orientations.

We have developed a regulatory element prediction method
that integrates traditional consensus-based searches with data
from expression profile experiments. We have characterized
this method by using it to ‘predict’ the locations of known
regulatory elements, and have found that the PROSPECT
method can significantly reduce the number of false positives
typically generated by a pattern-based search. Furthermore, we
have developed a web-based search tool so that other
researchers may apply the PROSPECT search method to genes
or elements that they are interested in. Researchers are able to
specify arbitrary patterns to be searched, and these searches are
relatively fast; over 6000 upstream sequences can be searched
in <30 s. Since combinatorial regulation seems quite likely to
be the underlying paradigm by which gene expression is
organized, we consider the development of the ability to do
complex searches of this nature to be a critical task in the
overall process of determining how to extract maximum infor-
mation from expression profiles.

ACKNOWLEDGEMENTS

We gratefully thank John Spouge and Tyra Wolfsberg for
helpful discussions and useful comments on the manuscript.
We also thank Alex Lash and Robert Ploger IV for careful
reading of the manuscript.

REFERENCES

1. Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S., Neuwald,A.F. and
Wootton,J.C. (1993) Detecting subtle sequence signals: a Gibbs sampling
strategy for multiple alignment. Science, 262, 208-214.

2. Hughes,J.D., Estep,P.W., Tavazoie,S. and Church,G.M. (2000)
Computational identification of cis-regulatory elements associated with
groups of functionally related genes in Saccharomyces cerevisiae. J. Mol.
Biol., 296, 1205-1214.

3. van Helden,J., André,B. and Collado-Vides,J. (1998) Extracting
regulatory sites from the upstream region of yeast genes by computational
analysis of oligonucleotide frequencies. J. Mol. Biol., 281, 827-842.

4. Brazma,A., Jonassen,l., Vilo,J. and Ukkonen,E. (1998) Predicting gene
regulatory elements in silico on a genomic scale. Genome Res., 8, 1202-1215.

wn

N

~

o]

©

20.

2

22,

2

W

. Quandt,K., Frech,K., Karas,H., Wingender,E. and Werner,T. (1995)

MatInd and MatInspector: new fast and versatile tools for detection of
consensus matches in nucleotide sequence data. Nucleic Acids Res., 23,
4878-4884.

. Lavorgna,G., Guffanti,A., Borsani,G., Bllabio,A. and Boncinelli,E.

(1999) TargetFinder: searching annotated sequence databases for target
genes of transcription factors. Bioinformatics, 15, 172-173.

. Zhang,M.Q. (1999) Promoter analysis of co-regulated genes in the yeast

genome. Comput. Chem., 23, 233-250.

. Wolfsberg,T.G., Gabrielian,A.E., Campbell,M.J., Cho,R.J., Spouge,J.L.

and Landsman,D. (1999) Candidate regulatory sequence elements for cell
cycle-dependent transcription in Saccharomyces cerevisiae. Genome Res.,
9, 775-792.

Cornish-Bowden,A. (1985) Nomenclature for incompletely specified
bases in nucleic acid sequences: recommendations 1984. Nucleic Acids
Res., 13, 3021-3030.

. Zhu,J. and Zhang,M.Q. (1999) SCPD: a promoter database of the yeast

Saccharomyces cerevisiae. Bioinformatics, 15, 607-611.

. Wingender,E., Chen,X., Hehl,R., Karas,H., Liebich, I, Matys,V.,

Meinhardt,T., Pruss,M., Reuter,I. and Schacherer,F. (2000) TRANSFAC:
an integrated system for gene expression regulation. Nucleic Acids Res.,
28,316-319.

. DeRisi,J.L., Iyer,V.R. and Brown,P.O. (1997) Exploring the metabolic and

genetic control of gene expression on a genomic scale. Science, 278, 680—686.

. Eisen,M.B., Spellman,P.T., Brown,P.O. and Botstein,D. (1998) Cluster

analysis and display of genome-wide expression patterns. Proc. Natl
Acad. Sci. USA, 95, 14863-14868.

. Lashkari,D.A., DeRisi,J.L., McCusker,J.H., Namath,A.F., Gentile,C.,

Hwang S.Y., Brown,P.O. and Davis R.W. (1997) Yeast microarrays for
genome wide parallel genetic and gene expression analysis. Proc. Natl
Acad. Sci. USA, 94, 13057-13062.

. Chu,S., DeRisi,J., Eisen,M., Mulholland,J., Botstein,D., Brown,P.O. and

Herskowitz,I. (1998) The transcriptional program of sporulation in
budding yeast. Science, 282, 699-705.

. Holstege,F.C., Jennings,E.G., Wyrick,J.J., Lee,T.I., Hengartner,C.J.,

Green,M.R., Golub,T.R., Lander,E.S. and Young,R.A. (1998) Dissecting
the regulatory circuitry of a eukaryotic genome. Cell, 95, 717-728.

. Spellman,P.T., Sherlock,G., Zhang,M.Q., Iyer,V.R., Anders,K., Eisen,M.B.,

Brown,P.O., Botstein,D. and Futcher,B. (1998) Comprehensive identification
of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by
microarray hybridization. Mol. Biol. Cell, 9, 3273-3297.

. Cho,R.J., Campbell,M.J., Winzeler,E.A., Steinmetz,L., Conway,A.,

Wodicka,L., Wolfsberg,T.G., Gabrielian,A.E., Landsman,D.,
Lockhart,D.J. and Davis,R.W. (1998) A genome-wide transcriptional
analysis of the mitotic cell cycle. Mol. Cell, 2, 65-73.

. Jelinsky,S.A. and Samson,L.D. (1999) Global response of Saccharomyces

cerevisiae to an alkylating agent. Proc. Natl Acad. Sci. USA, 96, 1486-1491.
Ball,C.A., Dolinski,K., Dwight,S.S., Harris, M. A, Issel-Tarver,L.,
Kasarskis,A., Scafe,C.R., Sherlock,G., Binkley,G., Jin,H., Kaloper,M.,
Orr,S.D., Schroeder,M., Weng S., Zhu,Y., Botstein,D. and Cherry,J.M.
(2000) Integrating functional genomic information into the
Saccharomyces genome database. Nucleic Acids Res., 28, 77-80.

. Wheeler,D.L., Church,D.M., Lash,A.E., Leipe,D.D., Madden,T.L.,

Pontius,J.U., Schuler,G.D., Schriml,LL.M., Tatusova,T.A., Wagner,L. and
Rapp,B.A. (2001) Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res., 29, 11-16.

Althoefer,H., Schleiffer,A., Wassmann,K., Nordheim,A. and Ammerer,G.
(1995) Mcml is required to coordinate G2-specific transcription in
Saccharomyces cerevisiae. Mol. Cell. Biol., 15, 5917-5928.

. Costanzo,M.C., Hogan,J.D., Cusick,M.E., Davis,B.P., Fancher,A.M.,

Hodges,P.E., Kondu,P., Lengieza,C., Lew-Smith,J.E., Lingner,C., Roberg-
Perez,K.J., Tillberg,M., Brooks,J.E. and Garrels,J.I. (2000) The yeast
proteome database (YPD) and Caenorhabditis elegans proteome database
(WormPD): comprehensive resources for the organization and comparison of
model organism protein information. Nucleic Acids Res., 28, 73-76.



