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Classical clustering methods.  
 
Attempt to identify groups of observations that are similar with respect to a 
certain number of variables.  
 
Similarity is “metric”: proximity, given some distance, in a space where 
observations are points, and dimensions are the variables recorded on the 
observations. 
 
In microarray data analysis, it may be useful to cluster 
 

•  “Conditions”, when they correspond to samples. In this case we have 
T observations and N variables (T points in an N-dimensional space).  
Unsupervised classification, or “class discovery” for the samples, 
based on gene expression. 
 

•  Genes. In this case we have N observations T variables (N points in a 
T-dimensional space). 
Partition genes into classes presenting similar expression profiles 
over the conditions of interest. Rationale: genes with similar 
expression  profiles may be involved in similar/related functions, and 
possibly be  co-regulated. But the discussion on this is wide open… 
Also, extract “characteristic expression patterns” as cluster 
centroids. 

 
(sometimes cluster both genes and samples …) 
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The basic geometric “cartoon”: 
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Pre-processing of the data matters a big deal: 
 
Does it make sense to center and/or standardize by row? (then a typical 
Euclidean distance will score as similar profiles with similar shapes, 
regardless of their overall level or size). 
 
Does it make sense to center and/or standardize by column? (then a typical 
Euclidean distance will be insensitive to original differences in variability 
scales and sizes for different “conditions”) 
 
In general, does it make sense to apply any left or right affine transformation 
to our data matrix X ? These questions may be posed equivalently in terms 
of choice of distance (other than Euclidean), and they matter. 
 
 
 
 
 
The literature on clustering is huge (especially due to developments related 
to data mining), and our discussion will be far from a complete picture.   
 
We consider only algorithms that create partitions of the data (Exclusive; 
overlapping clusters are not allowed; but algorithms allowing for 
overlapping do exist),  
 
Also, we consider (here) only algorithms that do not use additional 
information on the possible groups (Unsupervised; intrinsic) – Supervised 
algorithms will go under “classification”; working with a response. 
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Hierarchical Clustering  
 
 
Set of N data points in RT 
 
Define similarity/dissimilarity; choose a distance in the space, or give 
directly a NxN matrix of distances between pairs of points. 
 
Proceeding in an agglomerative fashion (“bottom-up”), generate a sequence 
of nested partitions of the data – progressively less fine – starting with N 
clusters (each containing a single point), and ending with one cluster 
(containing N points). 
 

•  Choose a distance function for points, say d(x1,x2). This could be 
simply the Euclidean distance, or a correlation distance, or any other 
more complicated distance. Sometimes the point distance is not 
defined explicitly as a function, but provided through an NxN matrix. 

•  Choose a distance function for clusters, say D(C1,C2), which will be 
based on a summary of the distances among points, as measured by 
d(x1,x2) (for clusters formed by just one points, D reduces to d). 

•  Start from N clusters, each containing one data point. 
•  At each iteration, proceed as follows: 

1. Using the current matrix of cluster distances, find the two closest 
clusters. 
2. Update the list of clusters by merging the two closest. 
3. Update the matrix of cluster distances accordingly 

•  Repeat until all data points are joined in one cluster. 
            
The method is very sensitive to anomalous data points/outliers   
 
Merging is un-revocable (cannot split a cluster after having created it); thus, 
a “bad” merging occurring early on will be carried all the way down, 
affecting the structure of the nested sequence.  
 
If two pairs of clusters are equally (and maximally) close at a given iteration, 
we have to choose arbitrarily, the choice will affect the structure of the 
nested sequence.   
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Defining cluster distance: the linkage method. 
 
 
Single Linkage (nearest neighbor): the distance between two clusters is 
defined as the minimum distance between points in them   
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Complete Linkage  (farthest neighbor): the distance between two clusters is 
defined as the maximum distance between points in them 
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Average Linkage (… a compromise): the distance between two clusters is 
defined as the average distance between points in them 
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Centroid Linkage: the distance between two clusters is defined as the 
distance between to centroids (the means, or else) 
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Single and complete linkages produce nested sequences that are invariant 
under monotone transformations of the distance d. This is not the case for 
the average linkage method. However, the latter is often preferred as a 
compromise because single linkage tends to produce “long” and “stringy” 
clusters, while complete linkage tends to produce “small”, “compact” 
clusters. 
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Example:  
http://server3.winforms.phil.tubs.de/~treiners/diplom/node19.html  
 
 
First step in constructing the nested sequence (first iteration): On the left is 
the matrix of distances among 5 data points. 3 and 5 are the closest, and are 
therefore merged in cluster “35”. On the right is the new distance matrix 
computed with complete linkage  
 
 

 
 
 
Dendrogram representing the nested sequence produced by single linkage 
(left) and complete linkage (right). The ordinate shows the distance at which 
the merging occurred. The horizontal ordering of the data points is any order 
preventing intersections of dendrogram branches.  
 
 
 

 
 
 



 7

Hierarchical clustering, per se, does not dictate a partition, and a number of 
clusters. It provides a nested sequence of partitions, each containing one less 
cluster. This is more informative than just a partition. 
 
To settle on one partition, we have to decide where to “cut” the dendrogram. 
We may do so based on 
  

•  A threshold distance (dissimilarity) level we are willing to “tolerate” 
within a cluster 

•  Looking for obvious “leaps” in distance as we move along the 
dendrogram 

•  Looking for an obvious “bend” in distance as we move along the 
dendrogram 

  
In fact, if we are fairly confident that the selected linkage method is 
appropriate, and “accidents” along the merging sequence are minor, we 
could read the distance level associated to various numbers of clusters 
∆(K,link,seq)=∆(K), from the top of the dendrogram (K=1 clusters) to the 
bottom (K=N), as a measure of “fit” of the partitioning in K groups. We will 
discuss choice of K later. 
 
 
Hierarchical clustering of both “rows” (called observations) and “columns” 
(called variables), is easily performed in Minitab.  
 
Various options for distance and linkage choice. 
 
Can produce the dendrogram. 
 
Can specify a number of clusters or a similarity level to settle on one 
partition along the nested sequence (possibly one cluster; will go all the way 
up). Corresponding cluster memberships m(x) are produced for each 
observation. 
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Partitioning algorithms: K-means. 
 
 
Once again, one needs to select a distance functions for points. Here, we also 
need to fix the number of clusters we want in the output partition; K (<N).  
 
Starting from given initial locations of the K cluster centroids, the algorithm 
uses the data points to iteratively relocate the centroids, and reallocate points 
to the closest centroid. 
 

•  Choose a distance function for points, say d(x1,x2).  
•  Choose a K. 
•  Initialize the K centroids (e.g. K among the N data points, selected at 

random)  
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•  At each iteration, proceed as follows: 

1. Compute the distance of each data point from each current cluster 
centroid. 
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2. Update the current cluster membership of each data point, picking 

the cluster centroid to which the data point is closest. 
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3. Update the current cluster centroids, as averages of the new 

clusters formed in 2. 
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•  Repeat until cluster memberships, and thus cluster centroids, stop 

changing. 
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Also this method is very sensitive to anomalous data points/outliers. 
 
Note that points can “move” from one cluster to another as the algorithm 
proceeds. 
 
If two cluster centroids are equally (and maximally) close to an observation 
at a given iteration, we have to choose arbitrarily to what cluster to attribute 
the point (the problem here is not so serious because points can move…)   
 
There are several “variants” of this algorithm. For example, only the 
centroid of the cluster getting a new observation may be updated. The 
iteration would then be described by:  
 

•  For each x : 
1. Compute the distances from the current centroids 
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2. Update the current cluster membership identifying the closes 

(“winning”) centroid 
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3. Update the winning centroid only 
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One may cycle through the observations several times before memberships 
and centroids “stabilize”. 
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The K-means algorithm is guaranteed to converge to a local minimum of the 
function (total within-cluster square distance; if we use Euclidean distance, 
this is a total within cluster sum of squares) 
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but not necessarily to a global one. The second form uses only the centroids 
as “optimization variables” (memberships can be derived from them), and 
helps us see how the final value of the objective function depends on the 
starting  )0(),0(1 Kxx �  . The third form is useful in comparison with SOM. 
 
Other relevant remarks: 
 

- A reasonable K may be unknown 
- Initialization of the centroids may make a difference (determine in 

what local minimum we end up) 
- Are cluster averages the most representative “prototypes” for clusters? 
- Cluster boundaries tend to have the shape of a “ball” with respect to 

the chosen distance.  
 
If we are fairly confident that initialization allows us to reach a “good” 
minimum, we could use ∆(K,start)=∆(K) as a measure of “fit” of the 
partitioning in K groups and calculate it for several values of K. We could 
then fix a threshold, or look for “leaps” or “bends” in ∆(K), to select a K. 
 
K-means clustering of “rows” (observations) on the basis of “columns” 
(variables), is easily performed in Minitab (Euclidean distance only). 
 
Can specify the final partition through a choice of K, or of an initial partition 
of the points. Corresponding cluster memberships are produced for each 
observation. 
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Some generalizations of partitioning algorithms: 
 

•  Self-Organizing Maps: add an underlying “topology” (neighboring 
structure on a lattice) that relates cluster centroids to one another. 

 
•  “Fuzzy” K-means: allow for a gradation of points between clusters; 

soft partitions. 
 
 
 
Some remarks for both hierarchical and K-means clustering 

 
 
Because methods are so sensitive to possibly “anomalous” positions of 
points, stability analyses are very important  
 

– Perturb adding noise to the data, and repeat the clustering 
–  
– Perturb deleting points from the data  
– (more generally, perturb re-sampling from the data) 

 
Are the outcomes (dendrogram and chosen partition; partition in K groups 
and choice of K) stable? We will go into this for the choice of K (where to 
cut the dendrogram; how many groups to postulate). 
 
 
 
How strong is the “association” of an observation x to the cluster to 
which it is attributed, say the m(x)-th ?  
 
Cluster memberships do not provide this information, but we could compute 
 

),(or     kk xxd) D(x,C  
 
for all clusters in the partition, to see if and by how much the distance from 
the m(x)-th cluster is smaller than the other ones. 
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Some interesting web-available abstracts and papers on clustering: 
 
An Analysis of Recent Work on Clustering Algorithms (1999), Daniel Fasulo 
Abstract: This paper describes four recent papers on clustering, each of which approaches 
the clustering problem from a different perspective and with different goals. It analyzes 
the strengths and weaknesses of each approach and describes how a user could could 
decide which algorithm to use for a given clustering application. Finally, it concludes 
with ideas that could make the selection and use of clustering algorithms for data analysis 
less difficult. http://citeseer.nj.nec.com/did/208269 
 
Hierarchical Model-based Clustering For Large Datasets (1999), Christian Posse 
Abstract: In recent years, hierarchical model-based clustering has provided promising 
results in a variety of applications. However, its use with large datasets has been hindered 
by a time and memory complexity that are at least quadratic in the number of 
observations. To overcome this difficulty, we propose to start the hierarchical 
agglomeration from an ecient classifcation of the data in many classes rather than from 
the usual set of singleton clusters. This initial partition is derived from a subgraph of the 
minimum spanning tree associated with the data. To this end, we develop graphical tools 
that assess the presence of clusters in the data and uncover observations difficult to 
classify.... http://citeseer.nj.nec.com/posse99hierarchical.html 
 
Model-Based Hierarchical Clustering  (1999), S. Vaithyanathan and B. Dom  
Abstract: We present an approach to model-based hierarchical clustering by formulating 
an objective function based on a Bayesian analysis. This model organizes the data into a 
cluster hierarchy while specifying a complex feature-set partitioning that is a key 
component of our model. Features can have either a unique distribution in every cluster 
or a common distribution over some (or even all) of the clusters. The cluster subsets over 
which these features have such a common distribution correspond to the nodes (clusters) 
of the tree representing the hierarchy. We apply this general model to the problem of 
document clustering for which we use a multinomial likelihood function and... 
http://citeseer.nj.nec.com/386534.html 
 
Refining Initial Points for K-Means Clustering (1998) P. S. Bradley, Usama M. Fayyad 
Proc. 15th International Conf. on Machine Learning 
Abstract: Practical approaches to clustering use an iterative procedure (e.g. K-Means, 
EM) which converges to one of numerous local minima. It is known that these iterative 
techniques are especially sensitive to initial starting conditions. We present a procedure 
for computing a refined starting condition from a given initial one that is based on an 
efficient technique for estimating the modes of a distribution. The refined initial starting 
condition allows the iterative algorithm to converge to a "better" local minimum. The 
procedure is applicable to a wide class of clustering algorithms for both discrete and 
continuous data. We demonstrate the application of this method to the popular K-
Means... http://citeseer.nj.nec.com/bradley98refining.html 
 
EM algorithms for self-organizing maps (1999).  T.Heskes, J. Spanjers, W. Wiegerinck 
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Abstract: Self-organizing maps are popular algorithms for unsupervised learning and data 
visualization. Exploiting the link between vector quantization and mixture modeling, we 
derive EM algorithms for selforganizing maps with and without missing values. We 
compare self-organizing maps with the elastic-net approach and explain why the former 
is better suited for the visualization of high-dimensional data. Several extensions and 
improvements are discussed. 1 Introduction Self-organizing maps are popular tools for 
clustering and visualization of high-dimensional data [8, 13]. To derive an error function 
for the self-organizing map, we will follow the vector quantization interpretation given 
in, among... http://citeseer.nj.nec.com/280386.html 
 
On the use of self-organizing maps for clustering and visualization (1999). A. Flexer. 
Principles of Data Mining and Knowledge Discovery. 
Abstract: We will show that the number of output units used in a self-organizing map 
(SOM) influences its applicability for either clustering or visualization. By reviewing the 
appropriate literature and theory as well as our own empirical results, we demonstrate 
that SOMs can be used for clustering or visualization separately, for simultaneous 
clustering and visualization, and even for clustering via visualization. For all these 
different kinds of application, SOM is compared to other statistical approaches. This will 
show SOM to be a very flexible tool which can be used for various forms of explorative 
data analysis but it will also be made obvious that this flexibility comes with a price in 
terms... http://citeseer.nj.nec.com/105424.html 
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